121 research outputs found

    Molecular characterization of highly pathogenic H5N1 avian influenza viruses isolated in Sweden in 2006

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The analysis of the nonstructural (NS) gene of the highly pathogenic (HP) H5N1 avian influenza viruses (AIV) isolated in Sweden early 2006 indicated the co-circulation of two sub-lineages of these viruses at that time. In order to complete the information on their genetic features and relation to other HP H5N1 AIVs the seven additional genes of twelve Swedish isolates were amplified in full length, sequenced, and characterized.</p> <p>Results</p> <p>The presence of two sub-lineages of HP H5N1 AIVs in Sweden in 2006 was further confirmed by the phylogenetic analysis of approximately the 95% of the genome of twelve isolates that were selected on the base of differences in geographic location, timing and animal species of origin. Ten of the analyzed viruses belonged to sub-clade 2.2.2. and grouped together with German and Danish isolates, while two 2.2.1. sub-clade viruses formed a cluster with isolates of Egyptian, Italian, Slovenian, and Nigerian origin. The revealed amino acid differences between the two sub-groups of Swedish viruses affected the predicted antigenicity of the surface glycoproteins, haemagglutinin and neuraminidase, rather than the nucleoprotein, polymerase basic protein 2, and polymerase acidic protein, the main targets of the cellular immune responses. The distinctive characteristics between members of the two subgroups were identified and described.</p> <p>Conclusion</p> <p>The comprehensive genetic characterization of HP H5N1 AIVs isolated in Sweden during the spring of 2006 is reported. Our data support previous findings on the coincidental spread of multiple sub-lineage H5N1 HPAIVs via migrating aquatic birds to large distance from their origin. The detection of 2.2.1. sub-clade viruses in Sweden adds further data regarding their spread in the North of Europe in 2006. The close genetic relationship of Swedish isolates sub-clade 2.2.2. to the contemporary German and Danish isolates supports the proposition of the introduction and spread of a single variant of 2.2.2. sub-clade H5N1 avian influenza viruses in the Baltic region. The presented findings underline the importance of whole genome analysis.</p

    Phenotype and immune function of lymph node and peripheral blood CLL cells are linked to transendothelial migration

    Get PDF
    everal lines of evidence suggest that homing of tumor cells to lymphoid tissue contributes to disease progression in chronic lymphocytic leukemia (CLL). Here, we demonstrate that lymph node (LN)-derived CLL cells possess a distinct phenotype, and exhibit enhanced capacity for T-cell activation and superior immune synapse formation when compared with paired peripheral blood (PB) samples. LN-derived CLL cells manifest a proliferative, CXCR4(dim)CD5(bright) phenotype compared with those in the PB and higher expression of T-cell activation molecules including CD80, CD86, and HLA-D-related (DR). In addition, LN-CLL cells have higher expression of α4β1 (CD49d) which, as well as being a co-stimulatory molecule, is required for CLL cells to undergo transendothelial migration (TEM) and enter the proliferation centers of the LNs. Using an in vitro system that models circulation and TEM, we showed that the small population of CLL cells that migrate are CXCR4(dim)CD5(bright) with higher CD49d, CD80, CD86, and HLA-DR compared with those that remain circulating; a phenotype strikingly similar to LN-derived CLL cells. Furthermore, sorted CD49d(hi) CLL cells showed an enhanced capacity to activate T cells compared with CD49d(lo) subpopulations from the same patient. Thus, although PB-CLL cells have a reduced capacity to form immune synapses and activate CD4(+) T cells, this was not the case for LN-CLL cells or those with the propensity to undergo TEM. Taken together, our study suggests that CLL cell immunologic function is not only modulated by microenvironmental interactions but is also a feature of a subpopulation of PB-CLL cells that are primed for lymphoid tissue homing and interaction with T cells

    Rapidly developed, optimized, and applied wastewater surveillance system for real-time monitoring of low-incidence, high-impact MPOX outbreak

    Get PDF
    Recent MPOX viral resurgences have mobilized public health agencies around the world. Recognizing the significant risk of MPOX outbreaks, large-scale human testing, and immunization campaigns have been initiated by local, national, and global public health authorities. Recently, traditional clinical surveillance campaigns for MPOX have been complemented with wastewater surveillance (WWS), building on the effectiveness of existing wastewater programs that were built to monitor SARS-CoV-2 and recently expanded to include influenza and respiratory syncytial virus surveillance in wastewaters. In the present study, we demonstrate and further support the finding that MPOX viral fragments agglomerate in the wastewater solids fraction. Furthermore, this study demonstrates that the current, most commonly used MPOX assays are equally effective at detecting low titers of MPOX viral signal in wastewaters. Finally, MPOX WWS is shown to be more effective at passively tracking outbreaks and/or resurgences of the disease than clinical testing alone in smaller communities with low human clinical case counts of MPOX

    Hemiptera records from Lake Spechtensee and from Southern Styria (Austria)

    Get PDF
    Hemiptera records gained in July 2015 in course of the 7th European Hemiptera Congress in Styria are presented. In total, 144 Auchenorrhyncha, 143 Heteroptera, 13 Psylloidea and 2 Aphididae species were collected. Ribautodelphax imitans (Delphacidae), Eurhadina saageri (Cicadellidae), Notonecta maculata (Notonectidae), Notonecta meridionalis (Notonectidae) and Polymerus cognatus (Miridae) are new records for Styria

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Minimising disability and falls in older people through a post-hospital exercise program: a protocol for a randomised controlled trial and economic evaluation

    Get PDF
    Background: Disability and falls are particularly common among older people who have recently been hospitalised. There is evidence that disability severity and fall rates can be reduced by well-designed exercise interventions. However, the potential for exercise to have these benefits in older people who have spent time in hospital has not been established. This randomised controlled trial will investigate the effects of a home-based exercise program on disability and falls among people who have had recent hospital stays. The cost-effectiveness of the exercise program from the health and community service provider's perspective will be established. In addition, predictors for adherence with the exercise program will be determined. Methods and design: Three hundred and fifty older people who have recently had hospital stays will participate in the study. Participants will have no medical contraindications to exercise and will be cognitively and physically able to complete the assessments and exercise program. The primary outcome measures will be mobility-related disability (measured with 12 monthly questionnaires and the Short Physical Performance Battery) and falls (measured with 12 monthly calendars). Secondary measures will be tests of risk of falling, additional measures of mobility, strength and flexibility, quality of life, fall-related self efficacy, health-system and community-service contact, assistance from others, difficulty with daily tasks, physical activity levels and adverse events. After discharge from hospital and completion of all hospital-related treatments, participants will be randomly allocated to an intervention group or usual-care control group. For the intervention group, an individualised home exercise program will be established and progressed during ten home visits from a physiotherapist. Participants will be asked to exercise at home up to 6 times per week for the 12-month study period. Discussion: The study will determine the impact of this exercise intervention on mobility-related disability and falls in older people who have been in hospital as well as cost-effectiveness and predictors of adherence to the program. Thus, the results will have direct implications for the design and implementation of interventions for this high-risk group of older people.7 page(s

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe
    corecore