21 research outputs found

    Prevalence rate of Klebsiella pneumoniae in the intensive care unit: epidemiology and molecular characteristics

    Get PDF
    Klebsiella pneumoniae carbapenemase producing bacteria are defined as a group of Gramnegative bacilli that are highly resistant to drugs. The resistance of pathogens of the Enterobacteriaceae family to β-lactam antibiotics such as carbapenems is considered a major threat in the medical field. The main aim of the current study was to explore and confirm the occurrence of carbapenemase producing K. pneumoniae in the Intensive Care Unit (ICU) in different hospital environment sample sites of two Egyptian hospitals in Cairo. Isolates were collected and the screening criteria of carbapenemase producing bacteria was followed by the investigators in order to record the antimicrobial resistance patterns of all isolates in addition to the molecular identification using the 16S rDNA. This study determined the sites responsible for the spreading of carbapenem-resistant K. pneumoniae including suction tubes, ventilator tubes, instrument tables and beds. All K. pneumoniae isolates collected from the ICU of both hospitals were resistant to oxacillin, meropenem and ceftazidime. Moreover, 16S rDNA gene sequence was used to study bacterial phylogeny and taxonomy for all K. pneumoniae isolates; the accession number of all isolates is reported. We concluded that infection control department policies in each hospital should be reinforced to avoid the escalation of K. pneumoniae as nosocomial infections in hospitals. This study should be repeated in other hospitals (especially the public hospitals) to assess the level of the problem

    Towards Developing Mid-Infrared Photonics Using Mxenes

    Full text link
    Recent research and development in the mid-infrared (IR) wavelength range (2-20 um) for a variety of applications, such as trace gas monitoring, thermal imaging, and free space communications have shown tremendous and fascinating progress. MXenes, which mainly refer to two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides, have drawn a lot of interest since their first investigation in 2011. MXenes project enormous potential for use in optoelectronics, photonics, catalysis, and energy harvesting fields proven by extensive experimental and theoretical studies over a decade. MXenes offers a novel 2D nano platform for cutting-edge optoelectronics devices due to their interesting mechanical, optical, and electrical capabilities, along with their elemental and chemical composition. We here discuss the key developments of MXene emphasizing the evolution of material synthesis methods over time and the resulting device applications. Photonic and optoelectronic device design and fabrication for mid-IR photonics are demonstrated by integrating MXene materials with various electrical and photonic platforms. Here, we show the potential of using Mxene in photonics for mid-IR applications and a pathway toward achieving next-generation devices for various applications.Comment: 50 Pages, 21 figure

    Trends in the assessment of multidrug efficiency against identified bacterial strains isolated from wounds at El-Demerdash Hospital, Egypt

    Get PDF
    Multidrug-resistant (MDR) bacteria is a severe problem for universal public health which increases morbidity and mortality rate. These resistant bacteria lead to ineffective treatment of drugs resulting in the spreading and persistence of infections. So, the major target of this study is to estimate the competence of multidrug antibacterial agents against bacterial strains isolated from wound samples and then identify the most potent Multidrug-resistant (MDR) bacteria. Fifty wound swab specimens were gathered from various wounds and several patients from the Central Microbiology Laboratory of El-Demerdash Hospital, Cairo, Egypt. Eighty- nine bacterial isolates were isolated from fifty wound samples then cultured on different media and tested for their susceptibility to different thirty antibiotic discs using the agar disc diffusion method. After recording the results of the susceptibility test, the post potent resistant bacterial isolates recorded 3 bacterial isolates which resistant to 30 different antibiotic types. These resistant bacterial isolates were identified using morphological, biochemical, and molecular techniques. The results recorded that the post potent resistant bacterial isolates identified as Klebsiella oxytoca, Pseudomonas aeruginosa, and Escherichia coli. This study concluded that with the increase in the random use of antibiotic drugs resulted in the presence of multi-antibacterial resistant strains. There are bacterial strains that were isolated from wounds in patients at El-Demerdash Hospital, Egypt, and identified. They can resist about thirty different antibiotic discs. Abbreviation: Multiple antibiotic resistance (MAR)

    Global burden of chronic respiratory diseases and risk factors, 1990–2019: an update from the Global Burden of Disease Study 2019

    Get PDF
    Background: Updated data on chronic respiratory diseases (CRDs) are vital in their prevention, control, and treatment in the path to achieving the third UN Sustainable Development Goals (SDGs), a one-third reduction in premature mortality from non-communicable diseases by 2030. We provided global, regional, and national estimates of the burden of CRDs and their attributable risks from 1990 to 2019. Methods: Using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we estimated mortality, years lived with disability, years of life lost, disability-adjusted life years (DALYs), prevalence, and incidence of CRDs, i.e. chronic obstructive pulmonary disease (COPD), asthma, pneumoconiosis, interstitial lung disease and pulmonary sarcoidosis, and other CRDs, from 1990 to 2019 by sex, age, region, and Socio-demographic Index (SDI) in 204 countries and territories. Deaths and DALYs from CRDs attributable to each risk factor were estimated according to relative risks, risk exposure, and the theoretical minimum risk exposure level input. Findings: In 2019, CRDs were the third leading cause of death responsible for 4.0 million deaths (95% uncertainty interval 3.6–4.3) with a prevalence of 454.6 million cases (417.4–499.1) globally. While the total deaths and prevalence of CRDs have increased by 28.5% and 39.8%, the age-standardised rates have dropped by 41.7% and 16.9% from 1990 to 2019, respectively. COPD, with 212.3 million (200.4–225.1) prevalent cases, was the primary cause of deaths from CRDs, accounting for 3.3 million (2.9–3.6) deaths. With 262.4 million (224.1–309.5) prevalent cases, asthma had the highest prevalence among CRDs. The age-standardised rates of all burden measures of COPD, asthma, and pneumoconiosis have reduced globally from 1990 to 2019. Nevertheless, the age-standardised rates of incidence and prevalence of interstitial lung disease and pulmonary sarcoidosis have increased throughout this period. Low- and low-middle SDI countries had the highest age-standardised death and DALYs rates while the high SDI quintile had the highest prevalence rate of CRDs. The highest deaths and DALYs from CRDs were attributed to smoking globally, followed by air pollution and occupational risks. Non-optimal temperature and high body-mass index were additional risk factors for COPD and asthma, respectively. Interpretation: Albeit the age-standardised prevalence, death, and DALYs rates of CRDs have decreased, they still cause a substantial burden and deaths worldwide. The high death and DALYs rates in low and low-middle SDI countries highlights the urgent need for improved preventive, diagnostic, and therapeutic measures. Global strategies for tobacco control, enhancing air quality, reducing occupational hazards, and fostering clean cooking fuels are crucial steps in reducing the burden of CRDs, especially in low- and lower-middle income countries

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Towards Developing Mid-Infrared Photonics Using Mxenes

    No full text
    Recent research and development in the mid-infrared (IR) wavelength range (2-20 um) for a variety of applications, such as trace gas monitoring, thermal imaging, and free space communications have shown tremendous and fascinating progress. MXenes, which mainly refer to two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides, have drawn a lot of interest since their first investigation in 2011. MXenes project enormous potential for use in optoelectronics, photonics, catalysis, and energy harvesting fields proven by extensive experimental and theoretical studies over a decade. MXenes offers a novel 2D nano platform for cutting-edge optoelectronics devices due to their interesting mechanical, optical, and electrical capabilities, along with their elemental and chemical composition. We here discuss the key developments of MXene emphasizing the evolution of material synthesis methods over time and the resulting device applications. Photonic and optoelectronic device design and fabrication for mid-IR photonics are demonstrated by integrating MXene materials with various electrical and photonic platforms. Here, we show the potential of using Mxene in photonics for mid-IR applications and a pathway toward achieving next-generation devices for various applications
    corecore