8 research outputs found
Interaction between SNAI2 and MYOD enhances oncogenesis and suppresses differentiation in Fusion Negative Rhabdomyosarcoma
Rhabdomyosarcoma (RMS) is an aggressive pediatric malignancy of the muscle, that includes Fusion Positive (FP)-RMS harboring PAX3/7-FOXO1 and Fusion Negative (FN)-RMS commonly with RAS pathway mutations. RMS express myogenic master transcription factors MYOD and MYOG yet are unable to terminally differentiate. Here, we report that SNAI2 is highly expressed in FN-RMS, is oncogenic, blocks myogenic differentiation, and promotes growth. MYOD activates SNAI2 transcription via super enhancers with striped 3D contact architecture. Genome wide chromatin binding analysis demonstrates that SNAI2 preferentially binds enhancer elements and competes with MYOD at a subset of myogenic enhancers required for terminal differentiation. SNAI2 also suppresses expression of a muscle differentiation program modulated by MYOG, MEF2, and CDKN1A. Further, RAS/MEK-signaling modulates SNAI2 levels and binding to chromatin, suggesting that the differentiation blockade by oncogenic RAS is mediated in part by SNAI2. Thus, an interplay between SNAI2, MYOD, and RAS prevents myogenic differentiation and promotes tumorigenesis. Rhabdomyosarcomas are tumours blocked in myogenic differentiation, which despite the expression of master muscle regulatory factors, including MYOD, are unable to differentiate. Here, the authors show that SNAI2 is upregulated by MYOD through super enhancers, binds to MYOD target enhancers, and arrests differentiation
Regulation of inflammation in diabetes: From genetics to epigenomics evidence
International audienceBackground: Diabetes is one of the greatest public health challenges worldwide, and we still lack complementary approaches to significantly enhance the efficacy of preventive and therapeutic approaches. Genetic and environmental factors are the culprits involved in diabetes risk. Evidence from the last decade has highlighted that deregulation in the immune and inflammatory responses increase susceptibility to type 1 and type 2 diabetes. Spatiotemporal patterns of gene expression involved in immune cell polarisation depend on genomic enhancer elements in response to inflammatory and metabolic cues. Several studies have reported that most regulatory genetic variants are located in the non-protein coding regions of the genome and particularly in enhancer regions. The progress of high-throughput technologies has permitted the characterisation of enhancer chromatin properties. These advances support the concept that genetic alteration of enhancers may influence the immune and inflammatory responses in relation to diabetes.Scope of review: Results from genome-wide association studies (GWAS) combined with functional and integrative analyses have elucidated the impacts of some diabetes risk-associated variants that are involved in the regulation of the immune system. Additionally, genetic variant mapping to enhancer regions may alter enhancer status, which in turn leads to aberrant expression of inflammatory genes associated with diabetes susceptibility. The focus of this review was to provide an overview of the current indications that inflammatory processes are regulated at the genetic and epigenomic levels in diabetes, along with perspectives on future research avenues that may improve understanding of the disease.Major conclusions: In this review, we provide genetic evidence in support of a deregulated immune response as a risk factor in diabetes. We also argue about the importance of enhancer regions in the regulation of immune cell polarisation and how the recent advances using genome-wide methods for enhancer identification have enabled the determination of the impact of enhancer genetic variation on diabetes onset and phenotype. This could eventually lead to better management plans and improved treatment responses in human diabetes
Gain-of-function mutant p53 downregulates miR-223 contributing to chemoresistance of cultured tumor cells
Mutant p53 proteins are expressed at high frequency in human tumors and are associated with poor clinical prognosis andresistance to chemotherapeutic treatments. Here we show that mutant p53 proteins downregulate micro-RNA (miR)-223 expressionin breast and colon cancer cell lines. Mutant p53 binds the miR-223 promoter and reduces its transcriptional activity. This requiresthe transcriptional repressor ZEB-1. We found that miR-223 exogenous expression sensitizes breast and colon cancer cell linesexpressing mutant p53 to treatment with DNA-damaging drugs. Among the putative miR-223 targets, we focused on stathmin-1(STMN-1), an oncoprotein known to confer resistance to chemotherapeutic drugs associated with poor clinical prognosis. Mutantp53 silencing or miR-223 exogenous expression lowers the levels of STMN-1 and knockdown of STMN-1 by small interfering RNAincreases cell death of mutant p53-expressing cell lines. On the basis of these findings, we propose that one of the pathwaysaffected by mutant p53 to increase cellular resistance to chemotherapeutic agents involves miR-223 downregulation and theconsequent upregulation of STMN-1
Focal adhesion kinase depletion reduces human hepatocellular carcinoma growth by repressing enhancer of zeste homolog 2
Hepatocellular carcinoma (HCC) is the most common type of liver cancer in humans. The focal adhesion tyrosine kinase (FAK) is often over-expressed in human HCC and FAK inhibition may reduce HCC cell invasiveness. However, the anti-oncogenic effect of FAK knockdown in HCC cells remains to be clarified. We found that FAK depletion in HCC cells reduced in vitro and in vivo tumorigenicity, by inducing G2/M arrest and apoptosis, decreasing anchorage-independent growth, and modulating the expression of several cancer-related genes. Among these genes, we showed that FAK silencing decreased transcription and nuclear localization of enhancer of zeste homolog 2 (EZH2) and its tri-methylation activity on lysine 27 of histone H3 (H3K27me3). Accordingly, FAK, EZH2 and H3K27me3 were concomitantly upregulated in human HCCs compared to non-tumor livers. In vitro experiments demonstrated that FAK affected EZH2 expression and function by modulating, at least in part, p53 and E2F2/3 transcriptional activity. Moreover, FAK silencing downregulated both EZH2 binding and histone H3K27me3 levels at the promoter of its target gene NOTCH2. Finally, we found that pharmacological inhibition of FAK activity resembled these effects although milder. In summary, we demonstrate that FAK depletion reduces HCC cell growth by affecting cancer-promoting genes including the pro-oncogene EZH2. Furthermore, we unveil a novel unprecedented FAK/EZH2 crosstalk in HCC cells, thus identifying a targetable network paving the way for new anticancer therapies
Blood Monocyte Phenotype Is A Marker of Cardiovascular Risk in Type 2 Diabetes
International audienceBACKGROUND: Diabetes is a major risk factor for atherosclerotic cardiovascular diseases with a 2-fold higher risk of cardiovascular events in people with diabetes compared with those without. Circulating monocytes are inflammatory effector cells involved in both type 2 diabetes (T2D) and atherogenesis. METHODS: We investigated the relationship between circulating monocytes and cardiovascular risk progression in people with T2D, using phenotypic, transcriptomic, and metabolomic analyses. cardiovascular risk progression was estimated with coronary artery calcium score in a cohort of 672 people with T2D. RESULTS: Coronary artery calcium score was positively correlated with blood monocyte count and frequency of the classical monocyte subtype. Unsupervised k-means clustering based on monocyte subtype profiles revealed 3 main endotypes of people with T2D at varying risk of cardiovascular events. These observations were confirmed in a validation cohort of 279 T2D participants. The predictive association between monocyte count and major adverse cardiovascular events was validated through an independent prospective cohort of 757 patients with T2D. Integration of monocyte transcriptome analyses and plasma metabolomes showed a disruption of mitochondrial pathways (tricarboxylic acid cycle, oxidative phosphorylation pathway) that underlined a proatherogenic phenotype. CONCLUSIONS: In this study, we provide evidence that frequency and monocyte phenotypic profile are closely linked to cardiovascular risk in patients with T2D. The assessment of monocyte frequency and count is a valuable predictive marker for risk of cardiovascular events in patients with T2D. REGISTRATION: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT0435386
Aberrant Function of the C-Terminal Tail of HIST1H1E Accelerates Cellular Senescence and Causes Premature Aging
Histones mediate dynamic packaging of nuclear DNA in chromatin, a process that is precisely controlled to guarantee efficient compaction of the genome and proper chromosomal segregation during cell division and to accomplish DNA replication, transcription, and repair. Due to the important structural and regulatory roles played by histones, it is not surprising that histone functional dysregulation or aberrant levels of histones can have severe consequences for multiple cellular processes and ultimately might affect development or contribute to cell transformation. Recently, germline frameshift mutations involving the C-terminal tail of HIST1H1E, which is a widely expressed member of the linker histone family and facilitates higher-order chromatin folding, have been causally linked to an as-yet poorly defined syndrome that includes intellectual disability. We report that these mutations result in stable proteins that reside in the nucleus, bind to chromatin, disrupt proper compaction of DNA, and are associated with a specific methylation pattern. Cells expressing these mutant proteins have a dramatically reduced proliferation rate and competence, hardly enter into the S phase, and undergo accelerated senescence. Remarkably, clinical assessment of a relatively large cohort of subjects sharing these mutations revealed a premature aging phenotype as a previously unrecognized feature of the disorder. Our findings identify a direct link between aberrant chromatin remodeling, cellular senescence, and accelerated aging