109 research outputs found

    Osteoporosis and increased risk of fractures

    Get PDF
    Osteoporosis is a common condition in older people. This condition leads to increased risk of fractures and is associated with morbidity and mortality. The number of patients with osteoporosis will increase significantly in the years to come due to the increasing numbers of older people and increasing life expectancy. This will be accompanied by increasing demand for care and clinical practice will be faced with questions about therapeutic options and the optimal treatment duration for patients with osteoporosis or increased risk of fractures. In this educational article, we are using practical questions to provide an overview of pathophysiology, diagnostics and treatment of osteoporosis and increased risk of fractures

    Rate control drugs differ in the prevention of progression of atrial fibrillation

    Get PDF
    AIMS: We hypothesize that in patients with paroxysmal atrial fibrillation (AF), verapamil is associated with lower AF progression compared to beta blockers or no rate control. METHODS AND RESULTS: In this pre-specified post hoc analysis of the RACE 4 randomized trial, the effect of rate control medication on AF progression in paroxysmal AF was analysed. Patients using Vaughan-Williams Class I or III antiarrhythmic drugs were excluded. The primary outcome was a composite of first electrical cardioversion (ECV), chemical cardioversion (CCV), or atrial ablation. Event rates are displayed using Kaplan–Meier curves and multivariable Cox regression analyses are used to adjust for baseline differences. Out of 666 patients with paroxysmal AF, 47 used verapamil, 383 used beta blockers, and 236 did not use rate control drugs. The verapamil group was significantly younger than the beta blocker group and contained more men than the no rate control group. Over a mean follow-up of 37 months, the primary outcome occurred in 17% in the verapamil group, 33% in the beta blocker group, and 33% in the no rate control group (P = 0.038). After adjusting for baseline characteristics, patients using verapamil have a significantly lower chance of receiving ECV, CCV, or atrial ablation compared to patients using beta blockers [hazard ratio (HR) 0.40, 95% confidence interval (CI) 0.19–0.83] and no rate control (HR 0.64, 95% CI 0.44–0.93). CONCLUSION: In patients with newly diagnosed paroxysmal AF, verapamil was associated with less AF progression, as compared to beta blockers and no rate control

    Osteoporosis and increased risk of fractures

    Get PDF
    Osteoporosis is a common condition in older people. This condition leads to increased risk of fractures and is associated with morbidity and mortality. The number of patients with osteoporosis will increase significantly in the years to come due to the increasing numbers of older people and increasing life expectancy. This will be accompanied by increasing demand for care and clinical practice will be faced with questions about therapeutic options and the optimal treatment duration for patients with osteoporosis or increased risk of fractures. In this educational article, we are using practical questions to provide an overview of pathophysiology, diagnostics and treatment of osteoporosis and increased risk of fractures

    A study protocol of external validation of eight COVID-19 prognostic models for predicting mortality risk in older populations in a hospital, primary care, and nursing home setting

    Get PDF
    Background The COVID-19 pandemic has a large impact worldwide and is known to particularly affect the older population. This paper outlines the protocol for external validation of prognostic models predicting mortality risk after presentation with COVID-19 in the older population. These prognostic models were originally developed in an adult population and will be validated in an older population (≥ 70 years of age) in three healthcare settings: the hospital setting, the primary care setting, and the nursing home setting. Methods Based on a living systematic review of COVID-19 prediction models, we identified eight prognostic models predicting the risk of mortality in adults with a COVID-19 infection (five COVID-19 specific models: GAL-COVID-19 mortality, 4C Mortality Score, NEWS2 + model, Xie model, and Wang clinical model and three pre-existing prognostic scores: APACHE-II, CURB65, SOFA). These eight models will be validated in six different cohorts of the Dutch older population (three hospital cohorts, two primary care cohorts, and a nursing home cohort). All prognostic models will be validated in a hospital setting while the GAL-COVID-19 mortality model will be validated in hospital, primary care, and nursing home settings. The study will include individuals ≥ 70 years of age with a highly suspected or PCR-confirmed COVID-19 infection from March 2020 to December 2020 (and up to December 2021 in a sensitivity analysis). The predictive performance will be evaluated in terms of discrimination, calibration, and decision curves for each of the prognostic models in each cohort individually. For prognostic models with indications of miscalibration, an intercept update will be performed after which predictive performance will be re-evaluated. Discussion Insight into the performance of existing prognostic models in one of the most vulnerable populations clarifies the extent to which tailoring of COVID-19 prognostic models is needed when models are applied to the older population. Such insight will be important for possible future waves of the COVID-19 pandemic or future pandemics

    Processes Underlying Glycemic Deterioration in Type 2 Diabetes: An IMI DIRECT Study

    Get PDF
    Objective We investigated the processes underlying glycemic deterioration in type 2 diabetes (T2D). Research Design and Methods 732 recently diagnosed T2D patients from the IMI-DIRECT study were extensively phenotyped over three years, including measures of insulin sensitivity (OGIS), β-cell glucose sensitivity (GS) and insulin clearance (CLIm) from mixed meal tests, liver enzymes, lipid profiles, and baseline regional fat from MRI. The associations between the longitudinal metabolic patterns and HbA1c deterioration, adjusted for changes in BMI and in diabetes medications, were assessed via stepwise multivariable linear and logistic regression. Results Faster HbA1c progression was independently associated with faster deterioration of OGIS and GS, and increasing CLIm; visceral or liver fat, HDL-cholesterol and triglycerides had further independent, though weaker, roles (R2=0.38). A subgroup of patients with a markedly higher progression rate (fast progressors) was clearly distinguishable considering these variables only (discrimination capacity from AUROC=0.94). The proportion of fast progressors was reduced from 56% to 8-10% in subgroups in which only one trait among OGIS, GS and CLIm was relatively stable (odds ratios 0.07 to 0.09). T2D polygenic risk score and baseline pancreatic fat, GLP-1, glucagon, diet, and physical activity did not show an independent role. Conclusions Deteriorating insulin sensitivity and β-cell function, increasing insulin clearance, high visceral or liver fat, and worsening of the lipid profile are the crucial factors mediating glycemic deterioration of T2D patients in the initial phase of the disease. Stabilization of a single trait among insulin sensitivity, β-cell function, and insulin clearance may be relevant to prevent progression

    A meta-analysis of previous falls and subsequent fracture risk in cohort studies

    Get PDF
    NC Harvey acknowledges funding from the UK Medical Research Council (MC_PC_21003; MC_PC_21001). The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through 75N92021D00001, 75N92021D00002, 75N92021D00003, 75N92021D00004, and 75N92021D00005. Funding for the MrOS USA study comes from the National Institute on Aging (NIA), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Center for Advancing Translational Sciences (NCATS), and NIH Roadmap for Medical Research under the following grant numbers: U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, and UL1 TR000128. Funding for the SOF study comes from the National Institute on Aging (NIA), and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), supported by grants (AG05407, AR35582, AG05394, AR35584, and AR35583). Funding for the Health ABC study was from the Intramural research program at the National Institute on Aging under the following contract numbers: NO1-AG-6–2101, NO1-AG-6–2103, and NO1-AG-6–2106.Peer reviewedPostprin

    World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions

    Get PDF
    BACKGROUND: To help adapt cardiovascular disease risk prediction approaches to low-income and middle-income countries, WHO has convened an effort to develop, evaluate, and illustrate revised risk models. Here, we report the derivation, validation, and illustration of the revised WHO cardiovascular disease risk prediction charts that have been adapted to the circumstances of 21 global regions. METHODS: In this model revision initiative, we derived 10-year risk prediction models for fatal and non-fatal cardiovascular disease (ie, myocardial infarction and stroke) using individual participant data from the Emerging Risk Factors Collaboration. Models included information on age, smoking status, systolic blood pressure, history of diabetes, and total cholesterol. For derivation, we included participants aged 40-80 years without a known baseline history of cardiovascular disease, who were followed up until the first myocardial infarction, fatal coronary heart disease, or stroke event. We recalibrated models using age-specific and sex-specific incidences and risk factor values available from 21 global regions. For external validation, we analysed individual participant data from studies distinct from those used in model derivation. We illustrated models by analysing data on a further 123 743 individuals from surveys in 79 countries collected with the WHO STEPwise Approach to Surveillance. FINDINGS: Our risk model derivation involved 376 177 individuals from 85 cohorts, and 19 333 incident cardiovascular events recorded during 10 years of follow-up. The derived risk prediction models discriminated well in external validation cohorts (19 cohorts, 1 096 061 individuals, 25 950 cardiovascular disease events), with Harrell's C indices ranging from 0·685 (95% CI 0·629-0·741) to 0·833 (0·783-0·882). For a given risk factor profile, we found substantial variation across global regions in the estimated 10-year predicted risk. For example, estimated cardiovascular disease risk for a 60-year-old male smoker without diabetes and with systolic blood pressure of 140 mm Hg and total cholesterol of 5 mmol/L ranged from 11% in Andean Latin America to 30% in central Asia. When applied to data from 79 countries (mostly low-income and middle-income countries), the proportion of individuals aged 40-64 years estimated to be at greater than 20% risk ranged from less than 1% in Uganda to more than 16% in Egypt. INTERPRETATION: We have derived, calibrated, and validated new WHO risk prediction models to estimate cardiovascular disease risk in 21 Global Burden of Disease regions. The widespread use of these models could enhance the accuracy, practicability, and sustainability of efforts to reduce the burden of cardiovascular disease worldwide. FUNDING: World Health Organization, British Heart Foundation (BHF), BHF Cambridge Centre for Research Excellence, UK Medical Research Council, and National Institute for Health Research

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Abstract Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Funding GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file 32: Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.Peer reviewedPublisher PD
    corecore