242 research outputs found

    Use of strip detectors in the study of breakup reactions

    Get PDF

    Slit design for efficient and accurate MTF measurement at megavoltage xâ ray energies

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135139/1/mp7405.pd

    Empirical noise performance of prototype active pixel arrays employing polycrystalline silicon thin- film transistors

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162751/2/mp14321.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162751/1/mp14321_am.pd

    Low-dose megavoltage cone-beam CT imaging using thick, segmented scintillators

    Full text link
    Megavoltage, cone-beam computed tomography (MV CBCT) employing an electronic portal imaging device (EPID) is a highly promising technique for providing soft-tissue visualization in image-guided radiotherapy. However, current EPIDs based on active matrix flat-panel imagers (AMFPIs), which are regarded as the gold standard for portal imaging and referred to as conventional MV AMFPIs, require high radiation doses to achieve this goal due to poor x-ray detection efficiency (~2% at 6 MV). To overcome this limitation, the incorporation of thick, segmented, crystalline scintillators, as a replacement for the phosphor screens used in these AMFPIs, has been shown to significantly improve the detective quantum efficiency (DQE) performance, leading to improved image quality for projection imaging at low dose. Toward the realization of practical AMFPIs capable of low dose, soft-tissue visualization using MV CBCT imaging, two prototype AMFPIs incorporating segmented scintillators with ~11 mm thick CsI:Tl and Bi 4 Ge 3 O 12 (BGO) crystals were evaluated. Each scintillator consists of 120 _ 60 crystalline elements separated by reflective septal walls, with an element-to-element pitch of 1.016 mm. The prototypes were evaluated using a bench-top CBCT system, allowing the acquisition of 180 projection, 360° tomographic scans with a 6 MV radiotherapy photon beam. Reconstructed images of a spatial resolution phantom, as well as of a water-equivalent phantom, embedded with tissue equivalent objects having electron densities (relative to water) varying from ~0.28 to ~1.70, were obtained down to one beam pulse per projection image, corresponding to a scan dose of ~4 cGy–-a dose similar to that required for a single portal image obtained from a conventional MV AMFPI. By virtue of their significantly improved DQE, the prototypes provided low contrast visualization, allowing clear delineation of an object with an electron density difference of ~2.76%. Results of contrast, noise and contrast-to-noise ratio are presented as a function of dose and compared to those from a conventional MV AMFPI.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90773/1/0031-9155_56_6_001.pd
    • …
    corecore