46 research outputs found

    Technical note: A view from space on global flux towers by MODIS and Landsat: The FluxnetEO dataset

    Get PDF
    Funding Information: Acknowledgements. We thank the team at the ICOS Carbon Portal for their support in publishing the FluxnetEO data sets, with great thanks in particular to Ute Karstens and Zois Zogopoulos. SW acknowledges funding from an ESA Living Planet Fellowship in the project Vad3e mecum. Alexey Vasilevich Panov acknowledges funding from the Max Planck Society (Germany), Russian Foundation for Basic Re- search, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, project no. 20-45-242908. Frederik Schrader and Christian BrĂŒmmer acknowledge funds from the German Federal Ministry of Food and Agriculture (BMEL) received through ThĂŒnen Institute of Climate-Smart Agriculture. Simon Besnard acknowledges funding from the European Union through the BIOMAS-CAT (project code: 4000115192/18/I/NB) (https://eo4society.esa. int/projects/biomascat/, last access: 3 May 2022) and VERIFY (project code: BO-55-101-006) (https://cordis.europa.eu/project/id/ 776810, last access: 3 May 2022) projects. Funding Information: Financial support. This research has been supported by the Euro- Publisher Copyright: © 2022 Sophia Walther et al.The eddy-covariance technique measures carbon, water, and energy fluxes between the land surface and the atmosphere at hundreds of sites globally. Collections of standardised and homogenised flux estimates such as the LaThuile, Fluxnet2015, National Ecological Observatory Network (NEON), Integrated Carbon Observation System (ICOS), AsiaFlux, AmeriFlux, and Terrestrial Ecosystem Research Network (TERN)/OzFlux data sets are invaluable to study land surface processes and vegetation functioning at the ecosystem scale. Space-borne measurements give complementary information on the state of the land surface in the surroundings of the towers. They aid the interpretation of the fluxes and support the benchmarking of terrestrial biosphere models. However, insufficient quality and frequent and/or long gaps are recurrent problems in applying the remotely sensed data and may considerably affect the scientific conclusions. Here, we describe a standardised procedure to extract, quality filter, and gap-fill Earth observation data from the MODIS instruments and the Landsat satellites. The methods consistently process surface reflectance in individual spectral bands, derived vegetation indices, and land surface temperature. A geometrical correction estimates the magnitude of land surface temperature as if seen from nadir or 40g off-nadir. Finally, we offer the community living data sets of pre-processed Earth observation data, where version 1.0 features the MCD43A4/A2 and MxD11A1 MODIS products and Landsat Collection 1 Tier 1 and Tier 2 products in a radius of 2 km around 338 flux sites. The data sets we provide can widely facilitate the integration of activities in the eddy-covariance, remote sensing, and modelling fields.publishersversionpublishe

    Resolving seasonal and diel dynamics of non-rainfall water inputs in a Mediterranean ecosystem using lysimeters

    Get PDF
    The input of liquid water to terrestrial ecosystems is composed of rain and non-rainfall water (NRW). The latter comprises dew, fog, and the adsorption of atmospheric vapor on soil particle surfaces. Although NRW inputs can be relevant to support ecosystem functioning in seasonally dry ecosystems, they are understudied, being relatively small, and therefore hard to measure. In this study, we apply a partitioning routine focusing on NRW inputs over 1 year of data from large, high-precision weighing lysimeters at a semi-arid Mediterranean site. NRW inputs occur for at least 3 h on 297 d (81 % of the year), with a mean diel duration of 6 h. They reflect a pronounced seasonality as modulated by environmental conditions (i.e., temperature and net radiation). During the wet season, both dew and fog dominate NRW, while during the dry season it is mostly the soil adsorption of atmospheric water vapor. Although NRW contributes only 7.4 % to the annual water input, NRW is the only water input to the ecosystem during 15 weeks, mainly in the dry season. Benefitting from the comprehensive set of measurements at our experimental site, we show that our findings are in line with (i) independent measurements and (ii) independent model simulations forced with (near-) surface energy and moisture measurements. Furthermore, we discuss the simultaneous occurrence of soil vapor adsorption and negative eddy-covariance-derived latent heat fluxes. This study shows that NRW inputs can be reliably detected through high-resolution weighing lysimeters and a few additional measurements. Their main occurrence during nighttime underlines the necessity to consider ecosystem water fluxes at a high temporal resolution and with 24 h coverage.</p

    Warming response of peatland CO2 sink is sensitive to seasonality in warming trends

    Get PDF
    Peatlands have acted as net CO2 sinks over millennia, exerting a global climate cooling effect. Rapid warming at northern latitudes, where peatlands are abundant, can disturb their CO2 sink function. Here we show that sensitivity of peatland net CO2 exchange to warming changes in sign and magnitude across seasons, resulting in complex net CO2 sink responses. We use multiannual net CO2 exchange observations from 20 northern peatlands to show that warmer early summers are linked to increased net CO2 uptake, while warmer late summers lead to decreased net CO2 uptake. Thus, net CO2 sinks of peatlands in regions experiencing early summer warming, such as central Siberia, are more likely to persist under warmer climate conditions than are those in other regions. Our results will be useful to improve the design of future warming experiments and to better interpret large-scale trends in peatland net CO2 uptake over the coming few decades.Peatlands have historically acted as a carbon sink, but it is unclear how climate warming will affect this. The response of peatland carbon uptake to warming depends on the timing of summer warming; early warming leads to increased CO2 uptake and later warming to decreased uptake

    Gross Primary Productivity of Four European Ecosystems Constrained by Joint CO<sub>2</sub> and COS Flux Measurements

    Get PDF
    Gross primary productivity (GPP), the gross uptake of carbon dioxide (CO2) by plant photosynthesis, is the primary driver of the land carbon sink, which presently removes around one quarter of the anthropogenic CO2 emissions each year. GPP, however, cannot be measured directly and the resulting uncertainty undermines our ability to project the magnitude of the future land carbon sink. Carbonyl sulfide (COS) has been proposed as an independent proxy for GPP as it diffuses into leaves in a fashion very similar to CO2, but in contrast to the latter is generally not emitted. Here we use concurrent ecosystem-scale flux measurements of CO2 and COS at four European biomes for a joint constraint on CO2 flux partitioning. The resulting GPP estimates generally agree with classical approaches relying exclusively on CO2 fluxes, but indicate a systematic underestimation under low light conditions, demonstrating the importance of using multiple approaches for constraining present-day GPP

    Respiration driven CO2 pulses dominate Australia's flux variability

    Get PDF
    The Australian continent contributes substantially to the year-to-year variability of the global terrestrial carbon dioxide (CO2) sink. However, the scarcity of in-situ observations in remote areas prevents deciphering the processes that force the CO2 flux variability. Here, examining atmospheric CO2 measurements from satellites in the period 2009-2018, we find recurrent end-of-dry-season CO2 pulses over the Australian continent. These pulses largely control the year-to-year variability of Australia's CO2 balance, due to 2-3 times higher seasonal variations compared to previous top-down inversions and bottom-up estimates. The CO2 pulses occur shortly after the onset of rainfall and are driven by enhanced soil respiration preceding photosynthetic uptake in Australia's semi-arid regions. The suggested continental-scale relevance of soil rewetting processes has large implications for our understanding and modelling of global climate-carbon cycle feedbacks.Comment: 28 pages (including supplementary materials), 3 main figures, 7 supplementary figure

    The three major axes of terrestrial ecosystem function.

    Full text link
    The leaf economics spectrum1,2 and the global spectrum of plant forms and functions3 revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species2. Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities4. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability4,5. Here we derive a set of ecosystem functions6 from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range of responses to environmental changes in carbon, water and energy cycling in terrestrial ecosystems7,8
    corecore