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Abstract Gross primary productivity (GPP), the gross uptake of carbon dioxide (CO2) by plant
photosynthesis, is the primary driver of the land carbon sink, which presently removes around one
quarter of the anthropogenic CO2 emissions each year. GPP, however, cannot be measured directly and the
resulting uncertainty undermines our ability to project the magnitude of the future land carbon sink.
Carbonyl sulfide (COS) has been proposed as an independent proxy for GPP as it diffuses into leaves in a
fashion very similar to CO2, but in contrast to the latter is generally not emitted. Here we use concurrent
ecosystem‐scale flux measurements of CO2 and COS at four European biomes for a joint constraint on CO2

flux partitioning. The resulting GPP estimates generally agree with classical approaches relying exclusively
on CO2 fluxes but indicate a systematic underestimation under low light conditions, demonstrating the
importance of using multiple approaches for constraining present‐day GPP.

Plain Language Summary Plants are Earth's biggest contributor for cleaning the atmosphere of
carbon dioxide and remove around one quarter of the carbon dioxide emitted by humans each year.
However, this contribution cannot be measured directly and has to be inferred or modelled on the basis of
related parameters. This introduces large uncertainties, which in turn undermine our ability to accurately
create future climate scenarios. Recent research revealed that the trace gas carbonyl sulfide is taken up by
plants in a very similar way as carbon dioxide and offers us an additional way of quantifying the carbon
dioxide uptake by photosynthesis. Here we use joint measurements of the carbon dioxide and carbonyl
sulfide exchange to infer plant carbon dioxide uptake, demonstrating the advantage of using multiple
approaches. We apply our method at four major European ecosystems and show that previous approaches,
based solely on carbon dioxide, may have underestimated the plant carbon dioxide uptake.

1. Introduction

The net exchange of CO2 between an ecosystem and the atmosphere (net ecosystem exchange, NEE) consists
of two major components of opposite direction, gross primary productivity (GPP), and ecosystem respiration
(Reco). Of these three quantities only NEE can be directly derived at ecosystem level, whereas GPP and Reco
have to be inferred from proxies or models (Wohlfahrt & Gu, 2015). For the contemporary carbon cycle, the
single most important source for GPP estimates has been NEE measurements by means of the eddy
covariance (EC) technique from which GPP as well as Reco are inferred in a standardized fashion by
applying so‐called flux partitioning (FP) models (see section 2; Beer et al., 2010; Lasslop et al., 2010;
Mahecha et al., 2010; Papale et al., 2006), which exploit the fact that GPP is zero during nighttime and/or
depends on solar irradiation during daytime. These FP models, however, have not escaped criticism due
to acknowledged problems with some of the underlying data (e.g., potential bias of nighttime EC flux
measurements, Aubinet, 2008) and model structural issues (e.g., misrepresentation of sources and drivers
of Reco; Heskel et al., 2013; Wehr et al., 2016; Wohlfahrt et al., 2005; Wohlfahrt & Galvagno, 2017), resulting
in poorly constrained estimates of uncertainty and the potential for significant bias of the inferred GPP and
Reco estimates (Wohlfahrt & Gu, 2015).
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In search for further constraints of GPP, the trace gas COS has recently received growing attention (Asaf
et al., 2013; Berry et al., 2013; Campbell et al., 2008, 2017; Yang et al., 2018). COS, present in the atmosphere
at an average mole fraction of 500 ppt, enters the plant leaf through the stomata in a similar way as CO2

where it is catalyzed to hydrogen sulfide (H2S) and CO2 in a one‐way reaction by the enzyme carbonic anhy-
drase (CA; Notni et al., 2007; Protoschill‐Krebs & Kesselmeier, 1992). In contrast to CO2, whose uptake is
always accompanied by release through mitochondrial respiration, the uptake of COS is a one‐way flux
(but see Gimeno et al., 2017), opening the opportunity to infer GPP at leaf and canopy scale as (Sandoval‐
Soto et al., 2005):

GPP ¼ FCOS χCO2ð Þ= χCOSLRUð Þ (1)

where FCOS is the COS flux (pmol m−2 s−1) and χCOS (ppt) and χCO2 (ppm) are the ambient mole fractions of
COS and CO2, respectively. Equation (1) is mathematically closed by the so‐called leaf relative uptake rate
(LRU) as the ratio of fluxes per unit mole fraction for COS and CO2, which must be specified a priori or
assessed independently. A recent literature synthesis (Whelan et al., 2018) showed LRU converging to a
median of 1.7, but with a wide spread between 0.7 and 6.2 (95% confidence interval of the median).
Another critical assumption of applying equation (1) at the ecosystem scale is that nonleaf sources or sinks
of COS must be negligible (Wohlfahrt et al., 2012). Previous studies have identified soils to contribute to the
ecosystem‐scale COS exchange, either as sinks or sources of COS, even though drivers for differences in
direction and magnitude of the soil COS exchange are still poorly understood (Whelan et al., 2018).
Previous studies that used COS to estimate ecosystem‐scale GPP relied on a constant, prescribed LRU and
neglected any in situ soil contribution to the COS flux (Asaf et al., 2013) or estimated LRU based on in situ
branch chamber measurements of COS and CO2 (Yang et al., 2018). A third approachmade use of a mechan-
istic ecosystem model to quantify the relationship between COS and CO2 fluxes to estimate regional GPP
fluxes on the base of airborne COS measurements (Hilton et al., 2017).

This study seeks to address the knowledge gaps in the use of COS as a proxy for ecosystem‐scale GPP and
proposes a novel approach for estimating ecosystem‐level GPP based on joint constraints from both CO2

and COS fluxes.

2. Materials and Methods
2.1. Site Description

Field measurements were conducted at four different European biomes in four measurement campaigns:
During spring and summer 2015 at an intensively managed temperate mountain grassland (GRA), in spring
2016 at a Mediterranean savanna ecosystem (SAV), in summer 2016 at a temperate beech forest (DBF), and
in summer 2017 at an agricultural soybean field (CRO). For further information on all sites, see Table S1 in
the suppporting information (Braendholt et al., 2018; El‐Madany et al., 2018; Hörtnagl et al., 2011; Hortnagl
& Wohlfahrt, 2014) and Text S1.

2.2. Mole Fraction Measurements

The COS and CO2 mole fractions were measured using a Quantum Cascade Laser (QCL) Mini Monitor
(Aerodyne Research, Billerica, MA, United States) at a wave number of ~2,056 cm−1 and at a rate of 5
(SAV, DBF, and CRO) or 10 Hz (GRA). The instrument was placed in a temperature‐controlled box to mini-
mize any influences of ambient temperature changes. The cooling of the QCL and its box was achieved by
two Thermocubes (400, Solid State Cooling Systems, Wappinger Falls, NY, United States).

We used valves (Parker‐Hannafin, Cleveland, OH, United States), Teflon™ tubing, stainless steel fittings
(SWAGELOK, Solon, OH, United States and FITOK, Offenbach, HE, Germany), and Teflon filters
(Savilex, EdenPrarie, MN, United States) to ensure that only materials known not to interact with COS were
used for the measurement and calibration airflow. At each field site, we installed the inlet of the intake tube
in close proximity to the sonic anemometer. We insulated the tube, which had a diameter of 1/4 inch in GRA
and 3/8 inch in the other field sites, and heated it to above ambient temperature to prevent condensation
within the tubes. The air was sucked to the QCL at a flowrate of above 7 L/min−1 using a vacuum pump
(Agilent Technologies, CA, United States).
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To correct for the known drift issues of the QCL (Kooijmans et al., 2016), we used a gas with known COS
mole fraction to do half hourly calibrations for 1 min. The gas cylinders (working standards) used for the
calibrations were either pressurized air (UN 1002), nitrogen (UN 1066), or dried ambient air, which were
cross compared (when working standard cylinders were full and close to empty) to an Aculife‐treated alumi-
num pressurized air cylinder obtained from the National Oceanic and Atmospheric Administration
(NOAA). The latter was analyzed by the central calibration laboratory of NOAA for its COS mole fraction
using gas chromatography. For additional information see Text S2 (Asaf et al., 2013; Berkelhammer et al.,
2014; Campbell et al., 2017; Kooijmans et al., 2016).

2.3. Ecosystem Fluxes

The COS and CO2 ecosystem fluxes were obtained using the eddy covariance method (Aubinet et al., 1999;
Baldocchi, 2014). Besides the fast retrieval of the mole fraction of these two scalars, we used available three‐
axis sonic anemometers to obtain high‐resolution data of the three wind components. The list of instruments
used in this study is reported in Table S1 (Braendholt et al., 2018; El‐Madany et al., 2018; Hörtnagl et al.,
2011; Hortnagl & Wohlfahrt, 2014). The raw data for scalar mole fractions as well as the sonic data were
saved on the same PC in SAV and DBF, whereas we used a time synchronization software (NTP,
Meinberg, NI, Germany) in GRA and CRO to synchronize two PCs (or a PC and a data logger) saving the
data separately. We then used a self‐developed software to determine the time lag, introduced by the separa-
tion of tube intake and the sonic anemometer and the tube length, between the mole fraction and sonic data-
set (Hortnagl et al., 2010). The data were then processed using the software EdiRe (University of Edinburgh,
UK) and MATLAB 2017 (MathWorks, MA, United States). We used laser drift corrected COS‐mole fraction
data (see section 2.2) and linear detrending to process our data before following the procedure to correct for
sensor response, tube attenuation, path averaging, and sensor separation (Gerdel et al., 2017).

2.4. Soil Flux Chamber Measurements

To quantify soil COS fluxes, we installed stainless steel (grade: 316 L) rings 5 cm into the soil, which
remained on site for the whole measurement campaign. The aboveground biomass eventually present
within each ring was removed at least one day prior to each measurement day, if necessary (GRA, SAV).
The vegetation surrounding the rings was allowed to grow and was not cut, the roots within the rings were
not removed, and natural litter was left in place. During each measurement, a transparent fused silica glass
chamber (Kitz et al., 2017) was placed into a water filled channel of the steel rings, while air was sucked
through the chamber to the QCL.We then compared the chamber COSmole fraction with the ambient mole
fraction above the chamber, using a second inlet to which we switched before the chamber measurement
and after reaching stable readings inside the chamber. The COS soil flux was calculated using the following
equation:

F ¼ q C2−C1ð Þ=A (2)

where F is the COS soil flux (pmol m−2 s−1), q denotes the flowrate in (mol/s), C2 and C1 are the chamber
and ambient mole fractions of COS in ppt, respectively, and A is the soil surface area (0.032 m2) covered
by the chamber. For a more detailed description see Kitz et al. (2017).

2.5. Soil Models

On the basis of the periodically measured soil fluxes and additionally retrieved meteorological and soil data
(incident shortwave radiation reaching the soil surface, soil moisture and temperature), a random forest
regression model (Liaw &Wiener, 2002) was trained for each site in order to simulate the soil COS exchange
at the same time scale as the ecosystem flux measurements (see section 2.3). For additional information on
this method see text S3 (Liaw & Wiener, 2002).

2.6. Ancillary Data

Standard meteorological parameters and soil related data (e.g., soil temperature and moisture) were mea-
sured at each site using state of the art sensors and provided by each site principal investigator (PI) (see
Table S1; Braendholt et al., 2018; El‐Madany et al., 2018; Hörtnagl et al., 2011; Hortnagl &Wohlfahrt, 2014).
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2.7. Flux Partitioning Models
2.7.1. FP Model
Traditionally, GPP on ecosystem level is inferred by applying either a so‐called nighttime (Reichstein et al.,
2005) or daytime (Lasslop et al., 2010) FP model. The nighttime FP model makes use of the assumption that
the nighttime NEE represents the ecosystem respiration (Reco). Therefore, a Reco model based on a
temperature‐dependent function (Lloyd & Taylor, 1994) is fit against the data and used to calculate the day-
time respiration.

Reco ¼ rb e
E0

1
TRef−T0

− 1
Tair−T0

� �
(3)

where Reco denotes the ecosystem respiration (μmol m−2 s−1), rb is the ecosystem base respiration at the
reference temperature TRef (°C), which is set to 15 °C, Tair (°C) refers to the air temperature (°C), and E0
(°C) to the temperature sensitivity. T0 was kept constant at −46.02 °C. GPP can then be retrieved as the dif-
ference between the measured NEE and the estimated daytime Reco.

The daytime FP model by Lasslop et al. (2010) uses nighttime data to parameterize the temperature sensitiv-
ity (E0) of Reco via equation (3) but adds a light and temperature dependent function to infer both GPP and
Reco from daytime data only:

NEE ¼ α β RPAR

α RPAR þ β
þ rb e

E0
1

Tref−T0
− 1

Tair−T0

� �
(4)

where α denotes the canopy light utilization efficiency (μmol CO2/μmol photons), β the maximum CO2

uptake rate of the canopy at light saturation (μmol CO2 m
−2 s−1), and RPAR the incoming photosynthetic

active radiation (μmolm−2 s−1). The right‐hand side of the equation, representing ecosystem respiration, fol-
lows the same notation as equation (3).
2.7.2. FP+ Model
We extended the FP model to include FCOS by using the GPP, resulting from the first part on the right‐hand
side of equation (4)

GPP ¼ α β RPAR

α RPAR þ β
(5)

in equation (6) (rearranged equation (1)):

FCOSmodel ¼ GPP LRU=χCO2ð Þ=χCOS (6)

where FCOSmodel is the modelled COS flux (pmol m−2 s−1), χCOS (ppt) and χCO2 (ppm) are the measured
ambient mole fractions of COS and CO2, respectively, and LRU (‐) is the leaf relative uptake rate. As COS
uptake by CA is thought to be a light‐independent process, while CO2 uptake by the enzyme RUBISCO
depends on solar radiation absorbed by leaf chlorophyll, LRU was, defined as a light‐dependent parameter,
consistent with recent experimental evidence (Kooijmans et al., 2017; Kooijmans et al., 2019; Whelan et al.,
2018; Wohlfahrt et al., 2012):

LRU ¼ ι e
κ

RPAR

� �
(7)

Here the parameter ι (‐) corresponds to the LRU at high light intensity, the parameter κ (μmol m−2 s−1) gov-
erns the increase of LRU at low light conditions, and RPAR (μmol m−2 s−1) represents the incident PAR. In
comparison to the FP model, where GPP is obtained by optimization against the measured NEE, in the FP+
model we concurrently optimize equations (4) and (6) against measured NEE and FCOS, GPP thus being
derived from two independent constraints.

From the 4–6 unknown model parameters (FP and FP+), we determined the temperature sensitivity para-
meter of Reco (i.e., E0) using nighttime data by minimizing the root squared mean error, whereas we used
DREAM (Scholz et al., 2017; Vrugt & Ter Braak, 2011), a multichain Markov Chain Monte Carlo

10.1029/2019GL082006Geophysical Research Letters

SPIELMANN ET AL. 5287



algorithm, to infer the remaining 3–5 (see Table S3) parameters based on Bayesian statistics, with daytime
data. Preliminary model runs showed that the vapor pressure deficit limitation of GPP (Lasslop et al.,
2010) during our field campaigns was minor, so we excluded the parameter controlling this effect from
our final model. For additional information on the Bayesian model inversion see Text S4 (Gelman &
Rubin, 1992; Schoups & Vrugt, 2010; Van Oijen et al., 2005; Vrugt & Ter Braak, 2011).

3. Results and Discussion

Modelled soil COS fluxes ranged from an uptake of−3.57 to an emission of 9.91 pmol m−2 s−1 with a median
of −0.68, 0.67, −2.60, and −0.53 pmol m−2 s−1 at GRA, SAV, DBF and CRO, respectively (Figure 1).
Differences in the sign and magnitude of the soil COS exchange among sites can be explained to a large
degree by the magnitude of solar radiation reaching the soil surface (see Text S3), which positively related
to the soil COS emission. Sites with a sparse canopy and high amounts of direct solar radiation reaching
the soil surface, like SAV, showed stronger COS emission during daytime, whereas during nighttime or at
sites with a high leaf area index, uptake was the dominant process for soil COS exchange (Figure 1). Kitz et al.
(2017), Whelan and Rhew (2015), and Meredith et al. (2018) suggest that daytime COS emission from soils is
mainly linked to abiotic thermal or photodegradation by yet largely unknown reactions, while COS uptake is
mostly governed by biological processes, notably the activity of microbial CA (Whelan et al., 2018).

Even though soil COS fluxes overall constituted a small fraction of ecosystem fluxes during daytime
(Figure 1), soils, in absolute terms, accounted for up to 10 % (SAV) of the daytime ecosystem COS flux, reach-
ing even higher ratios during dusk and dawn (Figure S4). On the basis of the substantial influence that soils
can have on the ecosystem COS exchange during certain times, we corrected the ecosystem COS fluxes for
the soil contribution to retrieve the canopy COS uptake.

Due to the joint control by stomatal conductance, canopy‐scale COS fluxes and NEE covaried during day-
time hours (Figure 2). In contrast to NEE, which turned positive in the absence of photosynthetically active
radiation (PAR; i.e. net CO2 release), the light‐independent canopy uptake of COS continued at lower rates
during night time (Figures 2 and S5–S12) due to incomplete stomatal closure. This finding is in agreement
with other studies (Kooijmans et al., 2017, 2019; Novick et al., 2009), although we did not observe an earlier
peak in COS uptake as compared to NEE (Figure 2) or GPP as Kooijmans et al. (2019) did. Note that the
nighttime residual uptake of COS, when GPP is zero, does not void the general approach of using COS as
a proxy for GPP, as this is accounted for by the light‐dependent parameterization of LRU, which approaches
infinity at low light (Eq. (7)).

The magnitude of the canopy COS exchange varied strongly between sites, reaching maximummean uptake
rates around 40 pmol m−2 s−1 (GRA, SAV, and CRO) and up to twice as much at DBF (Figure 2). GRA, DBF,

Figure 1. Carbonyl sulfide flux distribution. Distribution plot of the measured daytime carbonyl sulfide (COS) fluxes at
ecosystem scale (colored area on the left) and the modeled daytime COS fluxes from soil (brown area on the right) with
a bin size of 5 pmol m−2 s−1 over the course of the campaigns for each ecosystem. Positive fluxes indicate net emission,
while negative fluxes indicate net uptake.
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and CRO were characterized by similar maximum mean daytime net CO2 uptake rates (~20 μmol m−2 s−1),
whereas SAV exhibited only half of this net uptake (~9 μmol m−2 s−1; Figure 2). The mean observed
ecosystem COS fluxes of our study lie at the upper end or above comparable field observations of the
measurements compiled in the recent review by Whelan et al. (2018). The variable canopy COS uptake to
NEE ratio (Figures 2 and S13) suggests that either the LRU (equation (1)) must differ between sites,
and/or that similar NEE values result from variable GPP to Reco ratios. Unaccounted fluxes of COS
within the ecosystems, from stems or sinks and sources of yet unknown origin are another possible but
rather unlikely explanation for the differences in the COS uptake to NEE ratio.

GPP resulting from the FP+ model was generally higher than the classical (FP) approach (Figure 3), the dif-
ference between the sums of fixed CO2 between the models over the course of the measurement campaigns
amounting to GRA +5.08% ± 1.23%, SAV +6.08% ± 1.05%, DBF +4.20% ± 0.13%, CRO +1.79% ± 0.74% (the
standard deviations representing the temporal variability; see Text S4 and Figures S14–S17). However,
model differences were small compared to the model uncertainty calculated from the Bayesian model inver-
sion (see Text S4 and Figure S18).

The difference between the models is mainly attributable to a higher inferred initial quantum yield (α; equa-
tion (5)) for all FP+ models (Figure 4), whereas we detected a small decrease in the maximum canopy CO2

uptake rate at light saturation (β; Figure S19). As a consequence, the absolute difference in GPP between the
models for GRA, SAV and DBF increased sharply in the morning, remained relatively stable during the day,
and then decreased again in the evening (Figure S20). In contrast to these sites, the FP model predicted
higher GPP at higher light conditions for CRO (Figure S20), which caused the absolute model difference
in GPP to decline and even reverse sign around noontime (Figure S20). A stepwise regression analysis with
the absolute difference in GPP between the FP and FP+ model as dependent variable included PAR at all
sites, Tair at GRA, DBF and CRO, soil temperature at GRA, and vapor pressure deficit at neither site.

As hypothesized above, the LRU at saturating light intensity, that is, parameter ι, varied strongly across the
sites (Figure 4), with the optimal parameter set ranging from 0.89 (CRO) and 1.02 (GRA) for the two herbac-
eous ecosystems up to 2.22 (DBF) and 2.27 (SAV) for the forest and themixed woodland grassland site. These
values and their mean (1.6) are consistent with the median (1.7) and 95 % confidence interval (0.7 to 6.2)
from leaf‐level studies (Whelan et al., 2018). The most productive, that is, highest GPP, ecosystem was

Figure 2. Mean diel carbonyl sulfide and carbon dioxide fluxes. Mean diel variation of the net COS canopy fluxes (filled circles and solid lines) and NEE (open
carats and dashed lines) for (a) GRA, (b) SAV, (c) DBF, and (d) CRO over the course of the campaigns. Black xs indicate values below the limit of detection
(Langford et al., 2015), which cannot be distinguished from zero fluxes. Shaded areas represent ±1 standard deviation of the mean. Positive fluxes indicate net
emission, while negative fluxes indicate net uptake. The photosynthetic active radiation is plotted as hourly means on the right y axis of each plot as a bar graph.
COS = carbonyl sulfide; PAR = photosynthetic active radiation; NEE = net ecosystem exchange; CET = Central European Time.
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Figure 3. Comparison of model GPP output. GPP (μmol m−2 s−1) modelled on the basis of the FP (solid black lines) and the FP+ (solid colored lines) model plotted
against the measured PAR (μmol m−2 s−1) for (a) GRA, (b) SAV, (c) DBF, and (d) CRO over the course of the measurement campaigns. Black shaded areas
represent the 95% confidence interval of the FPmodel, whereas the colored shading represents the corresponding 95% confidence interval of the FP+model. GPP =
gross primary productivity; FP = flux partitioning; PAR = photosynthetic active radiation.

Figure 4. Comparison of model parameter output. Histogram of the probability density function of the last 2,950 runs after convergence of the DREAM algorithm
of α, the canopy light utilization efficiency (μmol CO2/μmol photons) in the left panels for (a) GRA, (b) SAV, (c) DBF, and (d) CRO and the parameter ι, which is
comparable to the LRU at high light conditions in the right panels for (e) GRA, (f) SAV, (g) DBF, and (h) CRO. The FPmodel is indicated by the black bars, the FP+
model by colored bars. FP = flux partitioning.
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CRO, followed by similar GPP at GRA and DBF, and finally SAV (Figures 3 and S19). Not accounting for the
soil COS exchange would have resulted in an overestimation of GPP by 1.3%–2.9 % for GRA and DBF and up
to 5.7%–8.6 % for CRO and SAV, which cautions against neglecting the soil contribution at sites where solar
radiation significantly penetrates to the soil surface. Results were not sensitive to the chosen prior distribu-
tion for the parameter ι—using a uniform prior distribution would only change the resulting ι by 0.01 (‐) in
GRA to up to +0.03 (‐) in DBF (see Table S4), which decreased the GPP of DBF by 1.4 %. In contrast to our
results, a recent study using isotopic flux partitioning (FPiso) by Wehr et al. (2016) reported that traditional
FP methods (Lasslop et al., 2010; Reichstein et al., 2005) overestimate Reco, which the authors ascribed to
the Kok effect (Heskel et al., 2013), and thus in turn GPP. As the FP+ and FPiso models have a quite different
theoretical basis, these conflicting results are difficult to reconcile andmost likely require joint fluxmeasure-
ments of COS and the isotopologues of CO2 to be resolved.

4. Conclusions

During recent years COS has seen increasing use as an alternative means of inferring GPP on spatial scales
from ecosystem to global (Asaf et al., 2013; Berry et al., 2013; Campbell et al., 2008; Campbell, Berry, et al.,
2017; Yang et al., 2018) . The Achilles heel of these promising efforts is the need to specify the LRU a priori
(Wohlfahrt et al., 2012), because its variability is not well understood, and the poorly quantified contribution
of soils (Whelan et al., 2018). Our study is the first to overcome these issues by treating the LRU as an adjus-
table parameter, which is jointly optimized against both CO2 and COS flux measurements, and explicitly
accounts for the soil COS exchange. Although GPP inferred in this fashion agreed well with the one derived
from conventional CO2 flux partitioning, our FP+ model yielded a slightly higher GPP (by 4.3% ± 1.8%) on
average over the course of the measurement campaigns and across all sites. Even though our study indicates
a larger uptake of CO2 across multiple biomes compared to conventional CO2 flux partitioning, our GPP esti-
mate lies within the uncertainty of the GPP reported in Beer et al. (2010) and thus does not support recent
reports of substantially higher estimates (Arneth et al., 2017; Welp et al., 2011). To take advantage of newly
emerging constraints on GPP, for example, COS (Wohlfahrt et al., 2012), isotopic flux partitioning (Wehr
et al., 2016), and Sun‐induced fluorescence (Wohlfahrt et al., 2018), should be compared and combined with
traditional flux partitioning to understand the differences between methods and to decrease the overall
uncertainty of GPP.
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