41 research outputs found

    Deleterious effects of polypropylene released from paper cups on blood profile and liver tissue of Clarias gariepinus: bioremediation using Spirulina

    Get PDF
    Despite numerous studies on microplastics, the biological impacts of polypropylene microplastics (PP-MPs) and its toxicity on freshwater fish have yet to be fully revealed. The purpose of this research was to look at the potentially harmful effects of PP-MPs in freshwater African catfish Clarias gariepinus and bioremediation using Spirulina. After acclimatization to laboratory conditions, 108 fish (125 ± 3 gm and 27 ± 2 cm) were assigned into triplicate six experimental groups (12 fish/group), a control group, Spirulina group (SP), PP-MP-treated groups (0.14 and 0.28 mg/l PP-MPs), and PP-MP + Spirulina-treated groups (0.14 mg/l PP-MPs + 200 mg/L SP and 0.28 mg/l PP-MPs +200 mg/L SP) for 15-day exposure and 45-day recovery after that. The hematological parameters exhibiting significance (RBCs, Hct, Hb, and MCV) or non-significance (MCH and MCHC) either decreased with the increase in PP-MP doses from 0.0 in the control to 0.28 mg/L red blood cells (RBCs), hematocrit (Hct), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), hemoglobin (Hb) and platelets or increased with such an increase in doses (mean corpuscular volume (MCV)). The liver enzyme activity, aspartate aminotransferase (AST), alkaline phosphatase (ALP), and alanine aminotransferase (ALT) exhibited non-significant (p ≥ 0.05) or significant (p < 0.05) increases in (0.14 and 0.28 mg/L) PP-MP-exposed groups, respectively, except ALP. Furthermore, there was a significant (p < 0.05) or non-significant (p ≥ 0.05) increase in 0.14 and 0.28 mg/l PP-MP +200 mg/L-exposure groups, respectively, compared to the control group and the same exposure group without Spirulina. In comparison to the control group, PP-MPs (0.14 and 0.28 mg/L) induced a significant (p < 0.05) increase in the percentage of poikilocytosis and nuclear abnormalities of RBCs. The liver tissue from fish exposed to PP-MPs exhibited varying degrees of pathological changes. These results indicated that these pathological changes increased with PP-MP concentration, suggesting that the effect of PP-MPs was dose-dependent. After 45 days of recovery under normal conditions, it was obvious that there was a significant improvement in the percentage of poikilocytosis and nuclear abnormalities of RBCs, as well as a non-significant improvement in hemato-biochemical parameters and liver tissue

    Effects of black sand on Oreochromis niloticus: insights into the biogeochemical impacts through an experimental study

    Get PDF
    Trace elements such as titanium, zirconium, thorium, and uranium, are found in black sand (BS) after weathering and corrosion. Precious metals are not the only valuable elements in black sand, rare earth elements are also found. The aquatic life in lakes and reservoirs is negatively affected by lithophilic elements such as lithium, uranium, and tin. Accordingly, intensive experiments were conducted on Nile tilapia (Oreochromis niloticus) after exposure to isolated black sand. Blood biomarkers, antioxidant balance, morpho-nuclear erythrocyte’s alterations, and histopathological signs have been investigated after fish exposure for 15 days to a 6.4 g BS/kg diet, 9.6 g BS/kg diet, and 2.4 g BS/kg diet. The blood profile, including platelets and white blood cells, was pronouncedly decreased as a result. Functions of the liver and kidneys were impaired. An increase in serum-antioxidant enzymes such as catalase activities and superoxide dismutase was recorded. Also, exposure to black sand induced cellular and nuclear abnormalities in the erythrocytes. In conclusion, the black sand isolated from the Red sea beach influenced Oreochromis niloticus’s hematology, biochemistry, and antioxidant parameters. Poikilocytosis and RBC nuclear abnormalities were also associated with exposure to black sand. The resulting erosion of rocks and rocks’ access to water forces us to consider the seriousness of climatic change on the aquatic ecosystem

    Toxicity of co-exposure of microplastics and lead in African catfish (Clarias gariepinus)

    Get PDF
    Microplastics (MPs) are an emerging threat to freshwater ecosystems with several ecotoxicological ramifications for fish. Microplastics (MPs) can adsorb heavy metals on their surfaces and increase their availability to aquatic organisms. The combined impact of lead and microplastics on fish has only been studied seldom utilizing a variety of markers. The present study aimed to evaluate the hematological, biochemical, and inflammatory signals (cytokines), as well as antioxidant enzymes in African catfish (Clarias gariepinus) exposed to lead (Pb) and MPs individually and combined for 15 days (acute toxicity experiment). The fish were split into four groups, the first of which was the control group. The second group received exposure to 1 mg/L of lead nitrate [Pb(NO3)2]. The third group was given 100 mg/L of MPs. A solution containing 100 mg/L of MPs and 1 mg/L of lead nitrate [Pb(NO3)2] was administered to the fourth group (the combination group). According to the findings, when MPs and Pb were combined for 15 days, the red blood cells (RBCs), thrombocytes, and lymphocytes were significantly reduced in comparison to the control fish. When compared to the control fish, the fish exposed to MPs and Pb alone or together showed a significant rise in blood interleukin-1β (IL-1β) and interleukin-6 (IL-6) cytokines. Both MPs and Pb exposure in catfish resulted in significant changes in the plasma electrolytes. The fish treated with MPs and Pb individually or in combination showed significant reduction in superoxide dismutase (SOD) and total antioxidant capacity (TAC) levels compared to the control group. The fish exposed to the combined action of MPs and Pb showed a considerable modification in all biochemical markers. The difference in the mean concentration of Pb (mg/L) between the fish exposed to Pb alone and the fish subjected to Pb and MPs combination was not statistically significant. In conclusion, according to this investigation, exposure to Pb caused an insignificant increase in Pb accumulation when MPs were present. However, co-exposure may result in anemia, cellular harm, extremely high levels of oxidative stress, and an inflammatory reaction

    Erythrocytes alterations of monosex tilapia (Oreochromis niloticus, Linnaeus, 1758) produced using methyltestosterone

    Get PDF
    AbstractThe present study aims to investigate the effects of methyltestosterone on monosex farmed tilapia, Oreochromis niloticus by detection of apoptosis, micronucleus and alterations of erythrocytes. Fishes were obtained from four localities (Assiut as a control and Beheira, Alexandria and Kafr EL-Sheikh; three farms from each governorate as farmed monosex produced using methyltestosterone). Blood smears were processed for Hematoxylin and eosin technique. The major alterations recorded in the red blood cells were as swelled cells (Sc), tear drop-like cells (Tr), and sickle cells (Sk). Also, a significant difference (P⩽0.001) between three governorates and Assiut was recorded in the micronucleus test, apoptosis and altered erythrocytes. These alterations are considered as an indication for performance and health of fish in the monosex culture medium indicating the side effects of overdose induction of MT

    Effects of ultraviolet A on the activity of two metabolic enzymes, DNA damage and lipid peroxidation during early developmental stages of the African catfish, Clarias gariepinus (Burchell, 1822)

    Get PDF
    Many ultraviolet-A (UVA)-induced biochemical and physiological changes are valid as biomarkers using aquatic species for detection of the degree of stress. Changes in the concentration and activities of enzymes, such as glucose-6-phosphate dehyderogenase (G6PDH), lactate dehyderogenase (LDH), DNA damage and lipid peroxidation (LPO), can be used as biomarkers to identify possible environmental contamination in fish. This study aimed to investigate the impact of UVA on the activity of the selected enzymes, DNA damage and LPO during early developmental stages of the African catfish Clarias gariepinus. Embryo hemogenates were used for measurements of G6PDH, LDH, DNA damage and LPO concentrations and activities spectrophotometrically at 37°C. The normal ontogenetic variations in enzyme activities, DNA damage and LPO of the early developmental stages (24–168 h-PFS; hours-post fertilization stage) were studied. There was a significant decrease in the activity of G6PDH till 120 h-PFS. Then after 120 h-PFS, the activity of such enzymes insignificantly increased toward higher stages. The LDH activity was recorded with a pattern of decrease till 96 h-PFS, followed by a significant increase toward 168 h-PFS. The polynomial pattern of variations in DNA damage and LPO was also evident. The patterns of the enzyme activities, corresponding DNA damage and LPO of the early ontogenetic stages under the influence of three different UVA doses (15, 30 and 60 min), were recorded. The pattern of variations in G6PDH activity in UVA-induced groups was similar to that of the control group with variation in the magnitude of such activity. In all treated groups, LDH activity decreased till 96 h-PFS, then increased till 168 h-PFS. Within each of the embryonic stages, the increase in UVA led to a significant increase in DNA damage. A significant increase in lipid peroxidation under UVA doses was recorded. The variability in number and molecular weight of proteins under exposure to UVA was evident, reflecting some of the genetic and transcriptional changes during exposure and development

    Effects of major and trace elements from the El Kahfa ring complex on fish: Geological, physicochemical, and biological approaches

    Get PDF
    The alkaline rocks are known for enriching rare lithophilic elements, including lithium, uranium, and tin, which negatively impact aquatic life. This study offers an intensive investigation of the influence of alkaline rocks on Nile Tilapia (Oreochromis niloticus). The variation in blood profile, the induction of antioxidant enzymes, morphological erythrocyte, and histological structure have been conducted for the fish after 15 days of exposure to alkaline rocks powder with a dose of 100 μg/L. As a result, there was a pronounced decrease in blood profiles, such as platelets and white blood cell counts. There was a failure in the liver and kidney functions. Moreover, it shows an increase in superoxide dismutase (SOD) and catalase (CAT) activities as antioxidant biomarkers. Also, exposure to alkaline rocks induced DNA mutation and erythrocyte distortion. We concluded that the bulk alkaline rocks induced changes in the hemato-biochemical and antioxidant parameters of Nile tilapia. Additionally, exposure to bulk alkaline rock compounds also caused poikilocytosis and nuclear abnormalities of RBCs. This draws our attention to the seriousness of climatic changes, the erosion of rocks, and their access to water

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Measuring routine childhood vaccination coverage in 204 countries and territories, 1980-2019 : a systematic analysis for the Global Burden of Disease Study 2020, Release 1

    Get PDF
    Background Measuring routine childhood vaccination is crucial to inform global vaccine policies and programme implementation, and to track progress towards targets set by the Global Vaccine Action Plan (GVAP) and Immunization Agenda 2030. Robust estimates of routine vaccine coverage are needed to identify past successes and persistent vulnerabilities. Drawing from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020, Release 1, we did a systematic analysis of global, regional, and national vaccine coverage trends using a statistical framework, by vaccine and over time. Methods For this analysis we collated 55 326 country-specific, cohort-specific, year-specific, vaccine-specific, and dosespecific observations of routine childhood vaccination coverage between 1980 and 2019. Using spatiotemporal Gaussian process regression, we produced location-specific and year-specific estimates of 11 routine childhood vaccine coverage indicators for 204 countries and territories from 1980 to 2019, adjusting for biases in countryreported data and reflecting reported stockouts and supply disruptions. We analysed global and regional trends in coverage and numbers of zero-dose children (defined as those who never received a diphtheria-tetanus-pertussis [DTP] vaccine dose), progress towards GVAP targets, and the relationship between vaccine coverage and sociodemographic development. Findings By 2019, global coverage of third-dose DTP (DTP3; 81.6% [95% uncertainty interval 80.4-82 .7]) more than doubled from levels estimated in 1980 (39.9% [37.5-42.1]), as did global coverage of the first-dose measles-containing vaccine (MCV1; from 38.5% [35.4-41.3] in 1980 to 83.6% [82.3-84.8] in 2019). Third- dose polio vaccine (Pol3) coverage also increased, from 42.6% (41.4-44.1) in 1980 to 79.8% (78.4-81.1) in 2019, and global coverage of newer vaccines increased rapidly between 2000 and 2019. The global number of zero-dose children fell by nearly 75% between 1980 and 2019, from 56.8 million (52.6-60. 9) to 14.5 million (13.4-15.9). However, over the past decade, global vaccine coverage broadly plateaued; 94 countries and territories recorded decreasing DTP3 coverage since 2010. Only 11 countries and territories were estimated to have reached the national GVAP target of at least 90% coverage for all assessed vaccines in 2019. Interpretation After achieving large gains in childhood vaccine coverage worldwide, in much of the world this progress was stalled or reversed from 2010 to 2019. These findings underscore the importance of revisiting routine immunisation strategies and programmatic approaches, recentring service delivery around equity and underserved populations. Strengthening vaccine data and monitoring systems is crucial to these pursuits, now and through to 2030, to ensure that all children have access to, and can benefit from, lifesaving vaccines. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe
    corecore