454 research outputs found

    Soot-free low-NOx aeronautical combustor concept: the lean azimuthal flame for kerosene sprays

    Get PDF
    An ultralow emission combustor concept based on “flameless oxidation” is demonstrated in this paper for aviation kerosene. Measurements of gas emissions, as well as of the size and number of nanoparticles via scanning mobility particle sizing, are carried out at the combustor outlet, revealing simultaneously soot-free and single-digit NOx levels for operation at atmospheric conditions. Such performance, achieved with direct spray injection of the fuel without any external preheating or prevaporization, is attributed to the unique mixing configuration of the combustor. The combustor consists of azimuthally arranged fuel sprays at the upstream boundary and reverse-flow air jets injected from downstream. This creates locally sequential combustion, good mixing with hot products, and a strong whirling motion that increases residence time and homogenizes the mixture. Under ideal conditions, a clean, bright-blue kerosene flame is observed, free of soot luminescence. Although soot is intermittently formed during operation around optimal conditions, high-speed imaging of the soot luminescence shows that particles are subjected to long residence times at O2-rich conditions and high temperatures, which likely promotes their oxidation. As a result, only nanoparticles in the 2–10 nm range are measured at the outlet under all tested conditions. The NOx emissions and completeness of the combustion are strongly affected by the splitting of the air flow. Numerical simulations confirm the trend observed in the experiment and provide more insight into the mixing and air dilution

    Pandemic boredom:Little evidence that lockdown-related boredom affects risky public health behaviors across 116 countries

    Get PDF
    Some public officials have expressed concern that policies mandating collective public health behaviors (e.g., national/regional "lockdown") may result in behavioral fatigue that ultimately renders such policies ineffective. Boredom, specifically, has been singled out as one potential risk factor for noncompliance. We examined whether there was empirical evidence to support this concern during the COVID-19 pandemic in a large cross-national sample of 63,336 community respondents from 116 countries. Although boredom was higher in countries with more COVID-19 cases and in countries that instituted more stringent lockdowns, such boredom did not predict longitudinal within-person decreases in social distancing behavior (or vice versa; n = 8,031) in early spring and summer of 2020. Overall, we found little evidence that changes in boredom predict individual public health behaviors (handwashing, staying home, self-quarantining, and avoiding crowds) over time, or that such behaviors had any reliable longitudinal effects on boredom itself. In summary, contrary to concerns, we found little evidence that boredom posed a public health risk during lockdown and quarantine. (PsycInfo Database Record (c) 2023 APA, all rights reserved). </p

    Pandemic Boredom: Little Evidence That Lockdown-Related Boredom Affects Risky Public Health Behaviors Across 116 Countries

    Get PDF
    Some public officials have expressed concern that policies mandating collective public health behaviors (e.g., national/regional "lockdown ") may result in behavioral fatigue that ultimately renders such policies ineffective. Boredom, specifically, has been singled out as one potential risk factor for noncompliance. We examined whether there was empirical evidence to support this concern during the COVID-19 pandemic in a large cross-national sample of 63,336 community respondents from 116 countries. Although boredom was higher in countries with more COVID-19 cases and in countries that instituted more stringent lockdowns, such boredom did not predict longitudinal within-person decreases in social distancing behavior (or vice versa; n = 8,031) in early spring and summer of 2020. Overall, we found little evidence that changes in boredom predict individual public health behaviors (handwashing, staying home, self-quarantining, and avoiding crowds) over time, or that such behaviors had any reliable longitudinal effects on boredom itself. In summary, contrary to concerns, we found little evidence that boredom posed a public health risk during lockdown and quarantine

    Casemix, management, and mortality of patients receiving emergency neurosurgery for traumatic brain injury in the Global Neurotrauma Outcomes Study: a prospective observational cohort study

    Get PDF

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    Overview of the JET ITER-like wall divertor

    Get PDF

    Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET

    Get PDF
    corecore