86 research outputs found

    Axonal Computations

    Get PDF
    Axons functionally link the somato-dendritic compartment to synaptic terminals. Structurally and functionally diverse, they accomplish a central role in determining the delays and reliability with which neuronal ensembles communicate. By combining their active and passive biophysical properties, they ensure a plethora of physiological computations. In this review, we revisit the biophysics of generation and propagation of electrical signals in the axon and their dynamics. We further place the computational abilities of axons in the context of intracellular and intercellular coupling. We discuss how, by means of sophisticated biophysical mechanisms, axons expand the repertoire of axonal computation, and thereby, of neural computation

    The comparison of Th1, Th2, Th9, Th17 and Th22 cytokine profiles in acute and chronic HIV-1 infection

    Get PDF
    The aim of this study was to compare cytokine expression on both gene and protein levels in acute and chronic phase of HIV type 1 (HIV-1) infection. Thirty four patients were enrolled for cytokine expression analysis on protein level in acute and chronic stage of HIV-1 infection. Using PCR array technology, expression of 84 cytokine genes was measured in 3 patients in acute and 3 patients in chronic stage of HIV-1 infection. Bead-based cytometry was used to quantify levels of Th1/Th2/Th9/Th17/Th22 cytokines. The results showed statistically significant increase of 13 cytokine gene expression (cd40lg, csf2, ifna5, il12b, il1b, il20, lta, osm, spp1, tgfa, tnfsf 11, 14 and 8) and downregulation of the il12a expression in chronic HIV type 1 infection. Concentrations of IL-10, IL-4 and TNF-Ξ± were increased in the acute HIV type 1 infection when compared to control group. During chronic HIV type 1 infection there was an increase of IL-10, TNF-Ξ±, IL-2, IL-6, IL-13 and IL-22 levels when compared to control group. Comparison of cytokine expression between two stages of infection showed a significant decrease in IL-9 concentration. This study showed changes in cytokine profiles on both gene and protein levels in different stages of HIV-infection

    Development of an In Vitro Model for the Multi-Parametric Quantification of the Cellular Interactions between Candida Yeasts and Phagocytes

    Get PDF
    We developed a new in vitro model for a multi-parameter characterization of the time course interaction of Candida fungal cells with J774 murine macrophages and human neutrophils, based on the use of combined microscopy, fluorometry, flow cytometry and viability assays. Using fluorochromes specific to phagocytes and yeasts, we could accurately quantify various parameters simultaneously in a single infection experiment: at the individual cell level, we measured the association of phagocytes to fungal cells and phagocyte survival, and monitored in parallel the overall phagocytosis process by measuring the part of ingested fungal cells among the total fungal biomass that changed over time. Candida albicans, C. glabrata, and C. lusitaniae were used as a proof of concept: they exhibited species-specific differences in their association rate with phagocytes. The fungal biomass uptaken by the phagocytes differed significantly according to the Candida species. The measure of the survival of fungal and immune cells during the interaction showed that C. albicans was the more aggressive yeast in vitro, destroying the vast majority of the phagocytes within five hours. All three species of Candida were able to survive and to escape macrophage phagocytosis either by the intraphagocytic yeast-to-hyphae transition (C. albicans) and the fungal cell multiplication until phagocytes burst (C. glabrata, C. lusitaniae), or by the avoidance of phagocytosis (C. lusitaniae). We demonstrated that our model was sensitive enough to quantify small variations of the parameters of the interaction. The method has been conceived to be amenable to the high-throughput screening of mutants in order to unravel the molecular mechanisms involved in the interaction between yeasts and host phagocytes

    Adapting evidence-informed complex population health interventions for new contexts : a systematic review of guidance

    Get PDF
    Background Adapting interventions that have worked elsewhere can save resources associated with developing new interventions for each specific context. While a developing body of evidence shows benefits of adapted interventions compared with interventions transported without adaptation, there are also examples of interventions which have been extensively adapted, yet have not worked in the new context. Decisions on when, to what extent, and how to adapt interventions therefore are not straightforward, particularly when conceptualising intervention effects as contingent upon contextual interactions in complex systems. No guidance currently addresses these questions comprehensively. To inform development of an overarching guidance on adaptation of complex population health interventions, this systematic review synthesises the content of the existing guidance papers. Methods We searched for papers published between January 2000 and October 2018 in 7 bibliographic databases. We used citation tracking and contacted authors and experts to locate further papers. We double screened all the identified records. We extracted data into the following categories: descriptive information, key concepts and definitions, rationale for adaptation, aspects of adaptation, process of adaptation, evaluating and reporting adapted interventions. Data extraction was conducted independently by two reviewers, and retrieved data were synthesised thematically within pre-specified and emergent categories. Results We retrieved 6694 unique records. Thirty-eight papers were included in the review representing 35 sources of guidance. Most papers were developed in the USA in the context of implementing evidence-informed interventions among different population groups within the country, such as minority populations. We found much agreement on how the papers defined key concepts, aims, and procedures of adaptation, including involvement of key stakeholders, but also identified gaps in scope, conceptualisation, and operationalisation in several categories. Conclusions Our review found limitations that should be addressed in future guidance on adaptation. Specifically, future guidance needs to be reflective of adaptations in the context of transferring interventions across countries, including macro- (e.g. national-) level interventions, better theorise the role of intervention mechanisms and contextual interactions in the replicability of effects and accordingly conceptualise key concepts, such as fidelity to intervention functions, and finally, suggest evidence-informed strategies for adaptation re-evaluation and reporting

    Expansion in CD39(+) CD4(+) Immunoregulatory T Cells and Rarity of Th17 Cells in HTLV-1 Infected Patients Is Associated with Neurological Complications

    Get PDF
    HTLV-1 infection is associated with several inflammatory disorders, including the neurodegenerative condition HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). It is unclear why a minority of infected subjects develops HAM/TSP. CD4(+) T cells are the main target of infection and play a pivotal role in regulating immunity to HTLV and are hypothesized to participate in the pathogenesis of HAM/TSP. the CD39 ectonucleotidase receptor is expressed on CD4(+) T cells and based on co-expression with CD25, marks T cells with distinct regulatory (CD39(+)CD25(+)) and effector (CD39(+)CD25(-)) function. Here, we investigated the expression of CD39 on CD4(+) T cells from a cohort of HAM/TSP patients, HTLV-1 asymptomatic carriers (AC), and matched uninfected controls. the frequency of CD39(+)CD4(+) T cells was increased in HTLV-1 infected patients, regardless of clinical status. More importantly, the proportion of the immunostimulatory CD39(+)CD25(-) CD4+ T-cell subset was significantly elevated in HAM/TSP patients as compared to AC and phenotypically had lower levels of the immunoinhibitory receptor, PD-1. We saw no difference in the frequency of CD39(+)CD25(+) regulatory (Treg) cells between AC and HAM/TSP patients. However, these cells transition from being anergic to displaying a polyfunctional cytokine response following HTLV-1 infection. CD39(-)CD25(+) T cell subsets predominantly secreted the inflammatory cytokine IL-17. We found that HAM/TSP patients had significantly fewer numbers of IL-17 secreting CD4(+) T cells compared to uninfected controls. Taken together, we show that the expression of CD39 is upregulated on CD4(+) T cells HAM/TSP patients. This upregulation may play a role in the development of the proinflammatory milieu through pathways both distinct and separate among the different CD39 T cell subsets. CD39 upregulation may therefore serve as a surrogate diagnostic marker of progression and could potentially be a target for interventions to reduce the development of HAM/TSP.National Institute of Allergies and Infectious DiseasesNational Institutes of HealthUniversity of CaliforniaSan Francisco-Gladstone Institute of Virology & Immunology Center for AIDS ResearchFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)John E. Fogarty International CenterNational Center for Research ResourcesNational Institute of General Medical Sciences from the National Institutes of HealthUniv Calif San Francisco, Dept Med, Div Expt Med, San Francisco, CA 94143 USAUniv Hawaii, John A Burns Sch Med, Dept Trop Med, Hawaii Ctr AIDS, Honolulu, HI 96822 USAUniv São Paulo, Sch Med, Deparment Infect Dis, São Paulo, BrazilUniv São Paulo, Sch Med, Div Clin Immunol & Allergy, São Paulo, BrazilFuncacao Prosangue, Hemoctr São Paulo, Mol Biol Lab, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Translat Med, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Translat Med, São Paulo, BrazilSan Francisco-Gladstone Institute of Virology & Immunology Center for AIDS Research: P30 AI027763FAPESP: 04/15856-9/KallasFAPESP: 2010/05845-0/KallasFAPESP: 11/12297-2/SanabaniJohn E. Fogarty International Center: D43 TW00003National Center for Research Resources: 5P20RR016467-11National Institute of General Medical Sciences from the National Institutes of Health: 8P20GM103466-11Web of Scienc

    The Colocalization Potential of HIV-Specific CD8+ and CD4+ T-Cells is Mediated by Integrin Ξ²7 but Not CCR6 and Regulated by Retinoic Acid

    Get PDF
    CD4+ T-cells from gut-associated lymphoid tissues (GALT) are major targets for HIV-1 infection. Recruitment of excess effector CD8+ T-cells in the proximity of target cells is critical for the control of viral replication. Here, we investigated the colocalization potential of HIV-specific CD8+ and CD4+ T-cells into the GALT and explored the role of retinoic acid (RA) in regulating this process in a cohort of HIV-infected subjects with slow disease progression. The expression of the gut-homing molecules integrin Ξ²7, CCR6, and CXCR3 was identified as a β€œsignature” for HIV-specific but not CMV-specific CD4+ T-cells thus providing a new explanation for their enhanced permissiveness to infection in vivo. HIV-specific CD8+ T-cells also expressed high levels of integrin Ξ²7 and CXCR3; however CCR6 was detected at superior levels on HIV-specific CD4+ versus CD8+ T-cells. All trans RA (ATRA) upregulated the expression of integrin Ξ²7 but not CCR6 on HIV-specific T-cells. Together, these results suggest that HIV-specific CD8+ T-cells may colocalize in excess with CD4+ T-cells into the GALT via integrin Ξ²7 and CXCR3, but not via CCR6. Considering our previous findings that CCR6+CD4+ T-cells are major cellular targets for HIV-DNA integration in vivo, a limited ability of CD8+ T-cells to migrate in the vicinity of CCR6+CD4+ T-cells may facilitate HIV replication and dissemination at mucosal sites
    • …
    corecore