41 research outputs found

    Mutations in multidomain protein MEGF8 identify a Carpenter syndrome subtype associated with defective lateralization

    Get PDF
    Carpenter syndrome is an autosomal-recessive multiple-congenital-malformation disorder characterized by multisuture craniosynostosis and polysyndactyly of the hands and feet; many other clinical features occur, and the most frequent include obesity, umbilical hernia, cryptorchidism, and congenital heart disease. Mutations of RAB23, encoding a small GTPase that regulates vesicular transport, are present in the majority of cases. Here, we describe a disorder caused by mutations in multiple epidermal-growth-factor-like-domains 8 (MEGF8), which exhibits substantial clinical overlap with Carpenter syndrome but is frequently associated with abnormal left-right patterning. We describe five affected individuals with similar dysmorphic facies, and three of them had either complete situs inversus, dextrocardia, or transposition of the great arteries; similar cardiac abnormalities were previously identified in a mouse mutant for the orthologous Megf8. The mutant alleles comprise one nonsense, three missense, and two splice-site mutations; we demonstrate in zebrafish that, in contrast to the wild-type protein, the proteins containing all three missense alterations provide only weak rescue of an early gastrulation phenotype induced by Megf8 knockdown. We conclude that mutations in MEGF8 cause a Carpenter syndrome subtype frequently associated with defective left-right patterning, probably through perturbation of signaling by hedgehog and nodal family members. We did not observe any subject with biallelic loss-of function mutations, suggesting that some residual MEGF8 function might be necessary for survival and might influence the phenotypes observed

    A case of de novo duplication of 15q24-q26.3

    Get PDF
    Distal duplication, or trisomy 15q, is an extremely rare chromosomal disorder characterized by prenatal and postnatal overgrowth, mental retardation, and craniofacial malformations. Additional abnormalities typically include an unusually short neck, malformations of the fingers and toes, scoliosis and skeletal malformations, genital abnormalities, particularly in affected males, and, in some cases, cardiac defects. The range and severity of symptoms and physical findings may vary from case to case, depending upon the length and location of the duplicated portion of chromosome 15q. Most reported cases of duplication of the long arm of chromosome 15 frequently have more than one segmental imbalance resulting from unbalanced translocations involving chromosome 15 and deletions in another chromosome, as well as other structural chromosomal abnormalities. We report a female newborn with a de novo duplication, 15q24-q26.3, showing intrauterine overgrowth, a narrow asymmetric face with down-slanting palpebral fissures, a large, prominent nose, and micrognathia, arachnodactyly, camptodactyly, congenital heart disease, hydronephrosis, and hydroureter. Chromosomal analysis showed a 46,XX,inv(9)(p12q13),dup(15)(q24q26.3). Array comparative genomic hybridization analysis revealed a gain of 42 clones on 15q24-q26.3. This case represents the only reported patient with a de novo 15q24-q26.3 duplication that did not result from an unbalanced translocation and did not have a concomitant monosomic component in Korea

    Glypican-6 promotes the growth of developing long bones by stimulating Hedgehog signaling.

    Get PDF
    Autosomal-recessive omodysplasia (OMOD1) is a genetic condition characterized by short stature, shortened limbs, and facial dysmorphism. OMOD1 is caused by loss-of-function mutations of glypican 6 (GPC6). In this study, we show that GPC6-null embryos display most of the abnormalities found in OMOD1 patients and that Hedgehog (Hh) signaling is significantly reduced in the long bones of these embryos. The Hh-stimulatory activity of GPC6 was also observed in cultured cells, where this GPC increased the binding of Hh to Patched 1 (Ptc1). Consistent with this, GPC6 interacts with Hh through its core protein and with Ptc1 through its glycosaminoglycan chains. Hh signaling is triggered at the primary cilium. In the absence of Hh, we observed that GPC6 is localized outside of the cilium but moves into the cilium upon the addition of Hh. We conclude that GPC6 stimulates Hh signaling by binding to Hh and Ptc1 at the cilium and increasing the interaction of the receptor and ligand

    Evaluation of anterior segment parameters using pentacam in silicone oil-injected patients after pars plana vitrectomy

    No full text
    Background: The aim of this study is to evaluate anterior segment changes with Pentacam Scheimpflug camera after pars plana vitrectomy (PPV) and silicone oil injection. Materials and Methods: In all, 44 eyes of 44 patients who underwent PPV by one surgeon were evaluated with Pentacam preoperatively, first week, and first month after surgery. The patients were divided into two groups, eyes with silicone injection after PPV and eyes with PPV and no endotamponade. Main outcome measures were preoperative and postoperative anterior chamber volume (ACV), anterior chamber depth (ACD), anterior chamber angle (ACA), and central corneal thickness (CCT) obtained with pentacam. Results: Each group consisted of 22 patients. In both groups no significant difference was detected among preop and postop changes in ACV and ACA values ( p > 0.05). The increase in ACD in silicone oil-injected group and the decrease in ACD in PPV group at postop 1 week were statistically significant ( p < 0.05). The increase in CCT in silicone oil-injected group at postop 1 week and then decrease in postop 1 month were also significant ( p < 0.05). Surgically induced astigmatism (SIA) was 3.7 Dioptry (D) in silicone oil-injected group and 2.4 D in PPV group at postop 1 week. SIA decreased to 1.7 D and 1.5 D, respectively, at postop 1 month. Changes in SIA were significant ( p < 0.05). Conclusion: PPV effects cornea and anterior segment. Changes in cornea and anterior segment after PPV seem to return to preoperative values among 1 month after surgery
    corecore