99 research outputs found

    Terrestrial Consequences of Spectral and Temporal Variability in Ionizing Photon Events

    Get PDF
    Gamma-Ray Bursts (GRBs) directed at Earth from within a few kpc may have damaged the biosphere, primarily though changes in atmospheric chemistry which admit greatly increased Solar UV. However, GRBs are highly variable in spectrum and duration. Recent observations indicate that short (~0.1 s) burst GRBs, which have harder spectra, may be sufficiently abundant at low redshift that they may offer an additional significant effect. A much longer timescale is associated with shock breakout luminosity observed in the soft X-ray (~10^3 s) and UV (~10^5 s) emission, and radioactive decay gamma-ray line radiation emitted during the light curve phase of supernovae (~10^7 s). Here we generalize our atmospheric computations to include a broad range of peak photon energies and investigate the effect of burst duration while holding total fluence and other parameters constant. The results can be used to estimate the probable impact of various kinds of ionizing events (such as short GRBs, X-ray flashes, supernovae) upon the terrestrial atmosphere. We find that the ultimate intensity of atmospheric effects varies only slightly with burst duration from 10^-1 s to 10^8 s. Therefore, the effect of many astrophysical events causing atmospheric ionization can be approximated without including time development. Detailed modeling requires specification of the season and latitude of the event. Harder photon spectra produce greater atmospheric effects for spectra with peaks up to about 20 MeV, because of greater penetration into the stratosphere.Comment: 30 pages, to be published in ApJ. Replaced for conformity with published version, including correction of minor typos and updated reference

    The low-temperature energy calibration system for the CUORE bolometer array

    Full text link
    The CUORE experiment will search for neutrinoless double beta decay (0nDBD) of 130Te using an array of 988 TeO_2 bolometers operated at 10 mK in the Laboratori Nazionali del Gran Sasso (Italy). The detector is housed in a large cryogen-free cryostat cooled by pulse tubes and a high-power dilution refrigerator. The TeO_2 bolometers measure the event energies, and a precise and reliable energy calibration is critical for the successful identification of candidate 0nDBD and background events. The detector calibration system under development is based on the insertion of 12 gamma-sources that are able to move under their own weight through a set of guide tubes that route them from deployment boxes on the 300K flange down into position in the detector region inside the cryostat. The CUORE experiment poses stringent requirements on the maximum heat load on the cryostat, material radiopurity, contamination risk and the ability to fully retract the sources during normal data taking. Together with the integration into a unique cryostat, this requires careful design and unconventional solutions. We present the design, challenges, and expected performance of this low-temperature energy calibration system.Comment: To be published in the proceedings of the 13th International Workshop on Low Temperature Detectors (LTD), Stanford, CA, July 20-24, 200

    Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry

    Full text link
    A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV . An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chemistry changes. Using CORSIKA, we have created tables that can be used to compute high energy cosmic ray (10 GeV - 1 PeV) induced atmospheric ionization and also, with the use of the NGSFC code, can be used to simulate the resulting atmospheric chemistry changes. We discuss the tables, their uses, weaknesses, and strengths.Comment: In press: Journal of Cosmology and Astroparticle Physics. 6 figures, 3 tables, two associated data files. Major revisions, including results of a greatly expanded computation, clarification and updated references. In the future we will expand the table to at least EeV levels

    Gamma-ray bursts and terrestrial planetary atmospheres

    Full text link
    We describe results of modeling the effects on Earth-like planets of long-duration gamma-ray bursts (GRBs) within a few kiloparsecs. A primary effect is generation of nitrogen oxide compounds which deplete ozone. Ozone depletion leads to an increase in solar UVB radiation at the surface, enhancing DNA damage, particularly in marine microorganisms such as phytoplankton. In addition, we expect increased atmospheric opacity due to buildup of nitrogen dioxide produced by the burst and enhanced precipitation of nitric acid. We review here previous work on this subject and discuss recent developments, including further discussion of our estimates of the rates of impacting GRBs and the possible role of short-duration bursts.Comment: 12 pages including 5 figures (4 in color). Added discussion of GRB rates and biological effects. Accepted for publication in New Journal of Physics, for special issue "Focus on Gamma-Ray Bursts

    Modeling atmospheric effects of the September 1859 Solar Flare

    Get PDF
    We have modeled atmospheric effects, especially ozone depletion, due to a solar proton event which probably accompanied the extreme magnetic storm of 1-2 September 1859. We use an inferred proton fluence for this event as estimated from nitrate levels in Greenland ice cores. We present results showing production of odd nitrogen compounds and their impact on ozone. We also compute rainout of nitrate in our model and compare to values from ice core data.Comment: Revised version including improved figures; Accepted for publication in Geophys. Res. Lett, chosen to be highlighted by AG

    The First Planets: the Critical Metallicity for Planet Formation

    Full text link
    A rapidly growing body of observational results suggests that planet formation takes place preferentially at high metallicity. In the core accretion model of planet formation this is expected because heavy elements are needed to form the dust grains which settle into the midplane of the protoplanetary disk and coagulate to form the planetesimals from which planetary cores are assembled. As well, there is observational evidence that the lifetimes of circumstellar disks are shorter at lower metallicities, likely due to greater susceptibility to photoevaporation. Here we estimate the minimum metallicity for planet formation, by comparing the timescale for dust grain growth and settling to that for disk photoevaporation. For a wide range of circumstellar disk models and dust grain properties, we find that the critical metallicity above which planets can form is a function of the distance r at which the planet orbits its host star. With the iron abundance relative to that of the Sun [Fe/H] as a proxy for the metallicity, we estimate a lower limit for the critical abundance for planet formation of [Fe/H]_crit ~ -1.5 + log(r/1 AU), where an astronomical unit (AU) is the distance between the Earth and the Sun. This prediction is in agreement with the available observational data, and carries implications for the properties of the first planets and for the emergence of life in the early Universe. In particular, it implies that the first Earth-like planets likely formed from circumstellar disks with metallicities Z > 0.1 Z_Sun. If planets are found to orbit stars with metallicities below the critical metallicity, this may be a strong challenge to the core accretion model.Comment: 12 pages, 5 figures; accepted for publication in Ap

    Climatic and Biogeochemical Effects of a Galactic Gamma-Ray Burst

    Full text link
    It is likely that one or more gamma-ray bursts within our galaxy have strongly irradiated the Earth in the last Gy. This produces significant atmospheric ionization and dissociation, resulting in ozone depletion and DNA-damaging ultraviolet solar flux reaching the surface for up to a decade. Here we show the first detailed computation of two other significant effects. Visible opacity of NO2 is sufficient to reduce solar energy at the surface up to a few percent, with the greatest effect at the poles, which may be sufficient to initiate glaciation. Rainout of dilute nitric acid is could have been important for a burst nearer than our conservative nearest burst. These results support the hypothesis that the characteristics of the late Ordovician mass extinction are consistent with GRB initiation.Comment: 12 pages, 2 figures, in press at Geophysical Research Letters. Minor revisions, including details on falsifying the hypothesi

    Atmospheric Consequences of Cosmic Ray Variability in the Extragalactic Shock Model II: Revised ionization levels and their consequences

    Full text link
    It has been suggested that galactic shock asymmetry induced by our galaxy's infall toward the Virgo Cluster may be a source of periodicity in cosmic ray exposure as the solar system oscillates perpendicular to the galactic plane. Here we investigate a mechanism by which cosmic rays might affect terrestrial biodiversity, ionization and dissociation in the atmosphere, resulting in depletion of ozone and a resulting increase in the dangerous solar UVB flux on the ground, with an improved ionization background computation averaged over a massive ensemble (about 7 x 10^5) shower simulations. We study minimal and full exposure to the postulated extragalactic background. The atmospheric effects are greater than with our earlier, simplified ionization model. At the lower end of the range effects are too small to be of serious consequence. At the upper end of the range, ~6 % global average loss of ozone column density exceeds that currently experienced due to effects such as accumulated chlorofluorocarbons. The intensity is less than a nearby supernova or galactic gamma-ray burst, but the duration would be about 10^6 times longer. Present UVB enhancement from current ozone depletion ~3% is a documented stress on the biosphere, but a depletion of the magnitude found at the upper end of our range would double the global average UVB flux. For estimates at the upper end of the range of the cosmic ray variability over geologic time, the mechanism of atmospheric ozone depletion may provide a major biological stress, which could easily bring about major loss of biodiversity. Future high energy astrophysical observations will resolve the question of whether such depletion is likely.Comment: 22 pages, 5 figures, to be published in Journal of Geophysical Research--Planets. This is an update and replacement for our 2008 paper, with a much more extensive simulation of air shower ionization. Ionization effects and ozone depletion are somewhat large

    Double-beta decay of 130^{130}Te to the first 0+^{+} excited state of 130^{130}Xe with CUORICINO

    Get PDF
    The CUORICINO experiment was an array of 62 TeO2_{2} single-crystal bolometers with a total 130^{130}Te mass of 11.311.3\,kg. The experiment finished in 2008 after more than 3 years of active operating time. Searches for both 0ν0\nu and 2ν2\nu double-beta decay to the first excited 0+0^{+} state in 130^{130}Xe were performed by studying different coincidence scenarios. The analysis was based on data representing a total exposure of N(130^{130}Te)\cdott=9.5×10259.5\times10^{25}\,y. No evidence for a signal was found. The resulting lower limits on the half lives are T1/22ν(130Te130Xe)>1.3×1023T^{2\nu}_{1/2}(^{130} Te\rightarrow^{130} Xe^{*})>1.3\times10^{23}\,y (90% C.L.), and T1/20ν(130Te130Xe)>9.4×1023T^{0\nu}_{1/2}(^{130} Te\rightarrow^{130} Xe^{*})>9.4\times10^{23}\,y (90% C.L.).Comment: 6 pages, 4 figure
    corecore