162 research outputs found

    Calibrating Climate Models Using Inverse Methods: Case studies with HadAM3, HadAM3P and HadCM3

    Get PDF
    Optimisation methods were successfully used to calibrate parameters in an atmospheric component of a climate model using two variants of the Gauss-Newton line-search algorithm. 1) A standard Gauss-Newton algorithm in which, in each iteration, all parameters were perturbed. 2) A randomized block-coordinate variant in which, in each iteration, a random sub-set of parameters was perturbed. The cost function to be minimized used multiple large-scale, multi-annual average observations and was constrained to produce net radiative fluxes close to those observed. These algorithms were used to calibrate the HadAM3 (3rd Hadley Centre Atmospheric Model) model at N48 resolution and the HadAM3P model at N96 resolution. For the HadAM3 model, cases with seven and fourteen parameters were tried. All ten 7-parameter cases using HadAM3 converged to cost function values similar to that of the standard configuration. For the 14-parameter cases several failed to converge, with the random variant in which 6 parameters were perturbed being most successful. Multiple sets of parameter values were found that produced multiple models very similar to the standard configuration. HadAM3 cases that converged were coupled to an ocean model and ran for 20 years starting from a pre-industrial HadCM3 (3rd Hadley Centre Coupled model) state resulting in several models whose global-average temperatures were consistent with pre-industrial estimates. For the 7-parameter cases the Gauss-Newton algorithm converged in about 70 evaluations. For the 14-parameter algorithm with 6 parameters being randomly perturbed about 80 evaluations were needed for convergence. However, when 8 parameters were randomly perturbed algorithm performance was poor. Our results suggest the computational cost for the Gauss-Newton algorithm scales between P and P2 where P is the number of parameters being calibrated. For the HadAM3P model three algorithms were tested. Algorithms in which seven parameters were perturbed and three out of seven parameters randomly perturbed produced final configurations comparable to the standard hand tuned configuration. An algorithm in which six out of thirteen parameters were randomly perturbed failed to converge. These results suggest that automatic parameter calibration using atmosphericmodels is feasible and that the resulting coupled models are stable. Thus, automatic calibration could replace human driven trial and error. However, convergence and costs are, likely, sensitive to details of the algorithm.</p

    Covariant Quantization of d=4 Brink-Schwarz Superparticle with Lorentz Harmonics

    Full text link
    Covariant first and second quantization of the free d=4 massless superparticle are implemented with the introduction of purely gauge auxiliary spinor Lorentz harmonics. It is shown that the general solution of the condition of maslessness is a sum of two independent chiral superfields with each of them corresponding to finite superspin. A translationally covariant, in general bijective correspondence between harmonic and massless superfields is constructed. By calculation of the commutation function it is shown that in the considered approach only harmonic fields with correct connection between spin and statistics and with integer negative homogeneity index satisfy the microcausality condition. It is emphasized that harmonic fields that arise are reducible at integer points. The index spinor technique is used to describe infinite-component fields of finite spin; the equations of motion of such fields are obtained, and for them Weinberg's theorem on the connection between massless helicity particles and the type of nongauge field that describes them is generalized.Comment: V2: 1 + 26 pages, published versio

    Site‐specific weed management—constraints and opportunities for the weed research community: Insights from a workshop

    Get PDF
    The adoption of site‐specific weed management (SSWM) technologies by farmers is not aligned with the scientific achievements in this field. While scientists have demonstrated significant success in real‐time weed identification, phenotyping and accurate weed mapping by using various sensors and platforms, the integration by farmers of SSWM and weed phenotyping tools into weed management protocols is limited. This gap was therefore a central topic of discussion at the most recent workshop of the SSWM Working Group arranged by the European Weed Research Society (EWRS). This insight paper aims to summarise the presentations and discussions of some of the workshop panels and to highlight different aspects of weed identification and spray application that were thought to hinder SSWM adoption. It also aims to share views and thoughts regarding steps that can be taken to facilitate future implementation of SSWM

    Kinetics of stochastically-gated diffusion-limited reactions and geometry of random walk trajectories

    Full text link
    In this paper we study the kinetics of diffusion-limited, pseudo-first-order A + B -> B reactions in situations in which the particles' intrinsic reactivities vary randomly in time. That is, we suppose that the particles are bearing "gates" which interchange randomly and independently of each other between two states - an active state, when the reaction may take place, and a blocked state, when the reaction is completly inhibited. We consider four different models, such that the A particle can be either mobile or immobile, gated or ungated, as well as ungated or gated B particles can be fixed at random positions or move randomly. All models are formulated on a dd-dimensional regular lattice and we suppose that the mobile species perform independent, homogeneous, discrete-time lattice random walks. The model involving a single, immobile, ungated target A and a concentration of mobile, gated B particles is solved exactly. For the remaining three models we determine exactly, in form of rigorous lower and upper bounds, the large-N asymptotical behavior of the A particle survival probability. We also realize that for all four models studied here such a probalibity can be interpreted as the moment generating function of some functionals of random walk trajectories, such as, e.g., the number of self-intersections, the number of sites visited exactly a given number of times, "residence time" on a random array of lattice sites and etc. Our results thus apply to the asymptotical behavior of the corresponding generating functions which has not been known as yet.Comment: Latex, 45 pages, 5 ps-figures, submitted to PR

    Crossover phenomena in spin models with medium-range interactions and self-avoiding walks with medium-range jumps

    Full text link
    We study crossover phenomena in a model of self-avoiding walks with medium-range jumps, that corresponds to the limit N0N\to 0 of an NN-vector spin system with medium-range interactions. In particular, we consider the critical crossover limit that interpolates between the Gaussian and the Wilson-Fisher fixed point. The corresponding crossover functions are computed using field-theoretical methods and an appropriate mean-field expansion. The critical crossover limit is accurately studied by numerical Monte Carlo simulations, which are much more efficient for walk models than for spin systems. Monte Carlo data are compared with the field-theoretical predictions concerning the critical crossover functions, finding a good agreement. We also verify the predictions for the scaling behavior of the leading nonuniversal corrections. We determine phenomenological parametrizations that are exact in the critical crossover limit, have the correct scaling behavior for the leading correction, and describe the nonuniversal lscrossover behavior of our data for any finite range.Comment: 43 pages, revte

    Introducing a reward system in assessment in histology: A comment on the learning strategies it might engender

    Get PDF
    BACKGROUND: Assessment, as an inextricable component of the curriculum, is an important factor influencing student approaches to learning. If assessment is to drive learning, then it must assess the desired outcomes. In an effort to alleviate some of the anxiety associated with a traditional discipline-based second year of medical studies, a bonus system was introduced into the Histology assessment. Students obtaining a year mark of 70% were rewarded with full marks for some tests, resulting in many requiring only a few percentage points in the final examination to pass Histology. METHODS: In order to ascertain whether this bonus system might be impacting positively on student learning, thirty-two second year medical students (non-randomly selected, representing four academic groups based on their mid-year results) were interviewed in 1997 and, in 1999, the entire second year class completed a questionnaire (n = 189). Both groups were asked their opinions of the bonus system. RESULTS: Both groups overwhelming voted in favour of the bonus system, despite less than 45% of students failing to achieve it. Students commented that it relieved some of the stress of the year-end examinations, and was generally motivating with regard to their work commitment. CONCLUSIONS: Being satisfied with how and what we assess in Histology, we are of the opinion that this reward system may contribute to engendering appropriate learning approaches (i.e. for understanding) in students. As a result of its apparent positive influence on learning and attitudes towards learning, this bonus system will continue to operate until the traditional programme is phased out. It is hoped that other educators, believing that their assessment is a reflection of the intended outcomes, might recognise merit in rewarding students for consistent achievement

    BARRA v1.0: the Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia

    Get PDF
    The Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia (BARRA) is the first atmospheric regional reanalysis over a large region covering Australia, New Zealand, and Southeast Asia. The production of the reanalysis with approximately 12&thinsp;km horizontal resolution – BARRA-R – is well underway with completion expected in 2019. This paper describes the numerical weather forecast model, the data assimilation methods, the forcing and observational data used to produce BARRA-R, and analyses results from the 2003–2016 reanalysis. BARRA-R provides a realistic depiction of the meteorology at and near the surface over land as diagnosed by temperature, wind speed, surface pressure, and precipitation. Comparing against the global reanalyses ERA-Interim and MERRA-2, BARRA-R scores lower root mean square errors when evaluated against (point-scale) 2&thinsp;m temperature, 10&thinsp;m wind speed, and surface pressure observations. It also shows reduced biases in daily 2&thinsp;m temperature maximum and minimum at 5&thinsp;km resolution and a higher frequency of very heavy precipitation days at 5 and 25&thinsp;km resolution when compared to gridded satellite and gauge analyses. Some issues with BARRA-R are also identified: biases in 10&thinsp;m wind, lower precipitation than observed over the tropical oceans, and higher precipitation over regions with higher elevations in south Asia and New Zealand. Some of these issues could be improved through dynamical downscaling of BARRA-R fields using convective-scale (&lt;2&thinsp;km) models.</p

    Critical Exponents, Hyperscaling and Universal Amplitude Ratios for Two- and Three-Dimensional Self-Avoiding Walks

    Get PDF
    We make a high-precision Monte Carlo study of two- and three-dimensional self-avoiding walks (SAWs) of length up to 80000 steps, using the pivot algorithm and the Karp-Luby algorithm. We study the critical exponents ν\nu and 2Δ4γ2\Delta_4 -\gamma as well as several universal amplitude ratios; in particular, we make an extremely sensitive test of the hyperscaling relation dν=2Δ4γd\nu = 2\Delta_4 -\gamma. In two dimensions, we confirm the predicted exponent ν=3/4\nu = 3/4 and the hyperscaling relation; we estimate the universal ratios  / =0.14026±0.00007\ / \ = 0.14026 \pm 0.00007,  / =0.43961±0.00034\ / \ = 0.43961 \pm 0.00034 and Ψ=0.66296±0.00043\Psi^* = 0.66296 \pm 0.00043 (68\% confidence limits). In three dimensions, we estimate ν=0.5877±0.0006\nu = 0.5877 \pm 0.0006 with a correction-to-scaling exponent Δ1=0.56±0.03\Delta_1 = 0.56 \pm 0.03 (subjective 68\% confidence limits). This value for ν\nu agrees excellently with the field-theoretic renormalization-group prediction, but there is some discrepancy for Δ1\Delta_1. Earlier Monte Carlo estimates of ν\nu, which were  ⁣0.592\approx\! 0.592, are now seen to be biased by corrections to scaling. We estimate the universal ratios  / =0.1599±0.0002\ / \ = 0.1599 \pm 0.0002 and Ψ=0.2471±0.0003\Psi^* = 0.2471 \pm 0.0003; since Ψ>0\Psi^* > 0, hyperscaling holds. The approach to Ψ\Psi^* is from above, contrary to the prediction of the two-parameter renormalization-group theory. We critically reexamine this theory, and explain where the error lies.Comment: 87 pages including 12 figures, 1029558 bytes Postscript (NYU-TH-94/09/01

    Reviewing research priorities in weed ecology, evolution and management: A horizon scan

    Get PDF
    Weedy plants pose a major threat to food security, biodiversity, ecosystem services and consequently to human health and wellbeing. However, many currently used weed management approaches are increasingly unsustainable. To address this knowledge and practice gap, in June 2014, 35 weed and invasion ecologists, weed scientists, evolutionary biologists and social scientists convened a workshop to explore current and future perspectives and approaches in weed ecology and management. A horizon scanning exercise ranked a list of 124 pre-submitted questions to identify a priority list of 30 questions. These questions are discussed under seven themed headings that represent areas for renewed and emerging focus for the disciplines of weed research and practice. The themed areas considered the need for transdisciplinarity, increased adoption of integrated weed management and agroecological approaches, better understanding of weed evolution, climate change, weed invasiveness and finally, disciplinary challenges for weed science. Almost all the challenges identified rested on the need for continued efforts to diversify and integrate agroecological, socio-economic and technological approaches in weed management. These challenges are not newly conceived, though their continued prominence as research priorities highlights an ongoing intransigence that must be addressed through a more system-oriented and transdisciplinary research agenda that seeks an embedded integration of public and private research approaches. This horizon scanning exercise thus set out the building blocks needed for future weed management research and practice; however, the challenge ahead is to identify effective ways in which sufficient research and implementation efforts can be directed towards these needs
    corecore