We study crossover phenomena in a model of self-avoiding walks with
medium-range jumps, that corresponds to the limit N→0 of an N-vector
spin system with medium-range interactions. In particular, we consider the
critical crossover limit that interpolates between the Gaussian and the
Wilson-Fisher fixed point. The corresponding crossover functions are computed
using field-theoretical methods and an appropriate mean-field expansion. The
critical crossover limit is accurately studied by numerical Monte Carlo
simulations, which are much more efficient for walk models than for spin
systems. Monte Carlo data are compared with the field-theoretical predictions
concerning the critical crossover functions, finding a good agreement. We also
verify the predictions for the scaling behavior of the leading nonuniversal
corrections. We determine phenomenological parametrizations that are exact in
the critical crossover limit, have the correct scaling behavior for the leading
correction, and describe the nonuniversal lscrossover behavior of our data for
any finite range.Comment: 43 pages, revte