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Abstract
The adoption of site- specific weed management (SSWM) technologies by farmers 
is not aligned with the scientific achievements in this field. While scientists have 
demonstrated significant success in real- time weed identification, phenotyping and 
accurate weed mapping by using various sensors and platforms, the integration by 
farmers of SSWM and weed phenotyping tools into weed management protocols 
is limited. This gap was therefore a central topic of discussion at the most recent 
workshop of the SSWM Working Group arranged by the European Weed Research 
Society (EWRS). This insight paper aims to summarise the presentations and discus-
sions of some of the workshop panels and to highlight different aspects of weed 
identification and spray application that were thought to hinder SSWM adoption. It 
also aims to share views and thoughts regarding steps that can be taken to facilitate 
future implementation of SSWM.
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1  | INTRODUC TION

If research on site- specific weed management (SSWM) was to be 
evaluated by the criteria of farmer adoption, its success would be 
considered rather modest (Fernández- Quintanilla et al., 2018). 
Research to date has shown the potential of herbicide spot- spraying 
(Esau et al., 2018) and of variable rate application (Kempenaar et al., 
2017) for reducing the quantities of herbicides required. There are 
also some indications that mechanical weed control may likewise 
benefit from the use of intelligent control techniques (Lati et al., 
2015; Machleb et al., 2020). Furthermore, new phenotyping ap-
proaches can be applied to elucidate the interactions between 
weeds and their environment and to facilitate decision- making re-
garding the timing and choice of strategies for weed control (Comont 
and Neve, 2020). Nonetheless, despite the promise inherent in 
SSWM, the use of SSWM tools remains sporadic, which led us to 
pose the following questions: (a) What is currently being done by the 
research community to develop and facilitate SSWM implementation by 
farmers? (b) What can be done by the research community to improve 
the situation, and how can research and development achievements be 
quantified or measured? These questions were discussed at the 2019 
workshop of the SSWM working group arranged by the European 
Weed Research Society in Odense, Denmark. Most of the 32 par-
ticipants were scientists and students, but several field advisors also 
participated. The vast majority of presentations focused on image 
analysis and weed detection, and only a few related to the integra-
tion and adoption of precise tools in commercial farming systems, 
which still poses a major challenge. In this insight paper, we share 
and channel ideas and opinions about SSWM challenges that were 
discussed at the workshop and elaborate on some aspects of SSWM 
that are seldom covered in the scientific literature. The paper looks 
beyond the front- stage of SSWM research by providing readers with 
a peep into back stage aspects. It thus deals with the main factors 
that the weed research community believes are hindering the adop-
tion of SSWM by farmers and presents some alternative social and 
scientific guidelines that could serve to mitigate the assimilation 
barrier.

2  | THE WEED DETEC TION CHALLENGE

The implementation of SSWM relies on accurate weed monitoring. 
Thus, most SSWM research focuses on weed detection and discrimi-
nation from crop plants. Weed/crop classification procedures involve 
a wide range of technologies based on a variety of sensing devices, 
such as RGB, multispectral and hyperspectral cameras (Herrmann 
et al., 2013; Utstumo et al., 2018). As every sensor has strengths 
and weaknesses, integration (fusion) of several sensors into a single 
platform can provide robust classification capacities under a wide 
range of imaging conditions. For example, depth- cameras, which in-
clude RGB and depth perception, combine spectral and morphologi-
cal (3D) weed characterisation. Other technologies that have been 
evaluated for weed detection include LiDAR, spectro- radiometry, 

radar systems, photogrammetry and thermal imaging (Andújar et al., 
2016). The advantages of devices using these technologies include 
the capture of the information necessary to develop weed maps, 
upon which site- specific control strategies can be based (Peteinatos 
et al., 2014).

Although a wide variety of weed detection- specific sensors, pro-
cedures and methods are commercially available, it is now generally 
agreed that the greatest potential for weed identification lies in the 
use of image- based machine learning techniques. Powerful comput-
ers and extensive development environments, such as TensorFlow 
(Abadi et al., 2016) and Keras (Chollet, 2018), provide models for 
training hundreds of thousands of weights in artificial neural net-
works specifically designed to meet image data requirements in so- 
called deep learning (DL) architectures (He et al., 2016). DL may now 
lead to a new paradigm in the detection and classification of weeds 
with more precise algorithms (Huang et al. 2018). When applying 
the models so developed on dedicated hardware, such as special-
ised NVIDIA Jetson TX- embedded systems, objects in images can 
now be identified in close to real time (Sa et al., 2018). This rapid 
identification reduces post- processing time, thereby, reducing over-
all costs and increasing treatment efficacy (Fernández- Quintanilla 
et al., 2018). The boost in weed detection capacities offered by DL 
was reflected in the research presented at the workshop showing 
improved weed detection success. Yet, only two presentations re-
ported practice- oriented farm experiments with SSWM, and these 
highlighted the difficulties in SSWM implementation, as described in 
the next section. It was concluded that availability to end- users and 
robustness in different environments are the major constraints to 
successful SSWM implementation by farmers.

3  | THE CHALLENGE OF IMPLEMENTING 
SSWM

Rasmussen et al., (2019) reported on a demonstration project, 
in which farmers were offered cost- free glyphosate application 
maps, based on UAV imagery, for spot- spraying against the field 
thistle Cirsium arvense. The aim of the project was to show the 
farmer community that spot- spraying based on prescription maps 
is technically and economically feasible (Rasmussen et al., 2019). 
Weed detection was carried out using Thistle Tool software, and 
other previously reported technical aspects (Azim et al., 2019; 
Rasmussen et al., 2020). All the farmers had to do was to decide, 
which cereal fields they wanted to spot- spray after the crop har-
vest. They were also asked to save the log file from the tractor 
computer after spraying so that the spatial accuracy of spraying 
could be evaluated. Help was offered to farmers who encountered 
problems uploading the on- off application maps into their tractor 
computers. In total, 20 farmers wanted to spot- spray C. arvense, 
but due to budget restraints, only seven fields were mapped. In 
the end, none of the fields was spot- sprayed, with the main rea-
son being problems in uploading the application maps (shape files) 
into tractor computers. In another farm study, spot- spraying was 
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cancelled due to ISOXML- format issues, hindering correct opening 
and closing of the sprayer boom sections. Even, the company that 
manufactured the sprayer was unable to upload the application 
files.

The second talk about SSWM field demonstrations presented 
the ‘RoboWeedMaps -  automated weed detection and mapping’ 
system. The RoboWeedMaps focuses mainly on DL- based de-
tection of weed species in early growth stages in cereal fields 
(Jørgensen, 2019). The system was successfully used for spot- 
spraying of annual grass weeds in winter cereals. However, here 
too, the uploading of on- off herbicide application maps into 
sprayer consoles was a major issue that hampered the spraying 
effort.

Both presentations showed that implementation and adoption 
of SSWM are far from constituting a simple technical process. 
While weed detection performance is often considered the main 
barrier to the adoption of SSWM (Lopez- Granados, 2011), many of 
the constraints hampering the implementation of SSWM are sim-
ilar to those for other precision agriculture practices (Fernández- 
Quintanilla et al., 2018). Indeed, social and scientific constraints 
have been the focus of a number of studies aiming to identify the 
factors impacting adoption rates (Lindblom et al., 2017; Tey and 
Brindal, 2012).

4  | DATA SHARING

It was suggested that data sharing is a key element that could 
improve SSWM implementation prospects. As mentioned above, 
the state of the art of SSWM methods (e.g. DL) relies mostly on 
image- driven data, for which promising results have been ob-
tained in weed recognition (Yu et al., 2019) and in other precision- 
agriculture research fields (Kamilaris and Prenafeta- Boldú, 2018). 
There are, however, a number of problems that remain to be 
addressed in the development of DL models. This development 
starts with a training stage that involves supervised learning, for 
which large volumes of annotated training data are required to 
ensure high detection rates. However, such datasets might not 
be sufficiently robust to ensure satisfactory results, due to lim-
ited representation of species, environmental factors (e.g. soil 
type, temperature) and/or growth- stage- related morphological or 
physiological changes. Additionally, human- related errors may be 
introduced during the training stage, and non- professional train-
ers find it especially difficult to assign small seedlings to particular 
species. These seedlings are often omitted or placed at genus level 
in both training and testing sets. To overcome these limiting fac-
tors, workshop participants were encouraged to share data and 
establish publicly available weed image datasets. Each research 
group was asked to generate a local weed dataset by growing 
local populations of weeds. To avoid misclassifications, partici-
pants were asked to grow specific weed species separately. The 
use of standardised imaging setup and image acquisition methods 
was also encouraged. In addition, it was suggested that combined 

datasets acquired under a wide range of environmental conditions 
might enable reliable comparisons between different DL models 
and increase their robustness. The first step towards establishing 
a joint dataset has been made by a Danish research group, who 
have developed the Open Plant Phenotyping Database for com-
mon weeds in Denmark (Madsen et al., 2020). It is the largest pub-
licly available dataset of its kind, and a valuable resource for future 
research in weed detection and plant phenotyping.

5  | THE CHALLENGE OF SHIF TING FROM 
TECHNIC AL TO SYSTEMIC APPROACHES

Bridging the gap between scientists’ and end users’ perspectives on 
SSWM was another issue discussed during the workshop. In their 
publication addressing this gap, Roux et al. (2006) highlighted the 
tendency of consultants and other knowledge vendors to prefer 
working with clients with levels of knowledge and technological 
capacities similar to their own. The larger the difference between 
supplier and adopter of knowledge and skills, the lower the chance 
that the transfer would be successful (Roux et al., 2006). This idea 
has interesting implications from an actor- network perspective, a 
social- science theory suggesting that farmers’ actions are perceived 
as closely interwoven within a network of other farmers, with no- 
one acting/deciding alone. Farmers’ choices are strongly dependent 
on the network as a whole, with its own goals and incentives. The 
more farmers commit to the network, the more difficult it becomes 
for them to extricate themselves from it, even if it is in their best 
interest (Gray and Gibson, 2013). Research in SSWM can also be 
viewed from a similar actor- network perspective, in which research 
is interwoven within an academic actor- network with its own goals 
and incentives. Even within research in SSWM, there exist different 
actor- networks, which impedes knowledge transfer across special-
ised disciplines. Each discipline has its own terminology, goals and 
incentives. The debated questions then become: How well do farmer 
and researcher networks interact, and how can the gap between net-
works be bridged? During the workshop, it was argued that SSWM 
end- users seek user- friendly, robust and reliable technologies that 
solve real- life problems, whereas, scientists aim to develop new 
knowledge and tools that are meritorious within their own networks. 
The extent to which these opposing goals constitute a barrier to the 
adoption of SSWM remained an open question at the workshop, but 
it was agreed that systemic approaches to SSWM should be empha-
sised in future research. A first step could be to bring end- users and 
researchers in different domains into the same loop of development, 
training and assimilation of the new technology and to acknowledge 
that the functionality of that loop should be subjected to research. 
Developing SSWM technologies is a multidisciplinary task involving 
participants with different levels of knowledge and skills. In such a 
research field, where scientists are both suppliers and adopters of 
knowledge and skills, the need for discussions across scientific disci-
plines is important. The workshop was an excellent opportunity for 
such an exchange of data and ideas.
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6  | CHALLENGING THE BA SIC CONCEPT 
OF SSWM

Involvement of farmers in the development process can be taken a 
step further. At present, SSWM is most often presented as a tech-
nology with fully automated weed detection and decision support 
systems giving outputs to traditional actuation systems (sprayers, 
mechanical implements) or robots. Sensors on the relevant vehicle, 
drone or satellite- based platform play a central role in this process. 
They provide highly detailed data— from the whole crop level down 
to the individual plant level (Dyrmann et al., 2016; Pflanz et al., 
2018). In most studies, commercially available camera systems are 
used, with the intention of providing inexpensive solutions for farm-
ing practices. However, as these technologies are becoming increas-
ingly complex, farmers (individuals and large- scale cooperatives) 
might be less inclined to use them, as they leave little room for the 
application of personal knowledge in decision making.

It was pointed out at the workshop that some farmers use new 
SSWM technologies simply as an adjunct tool to support their 
decision- making. One example that was presented is an assistance 
system for site- specific application of plant protection products 
(Pohl et al., 2020). This assistance system, which was developed by a 
German research group, is designed to identify and characterise spe-
cific areas within a field requiring precise applications. This system 
is based on an already existing infrastructure (e.g. farm management 
systems) but also integrates large quantities of geo- data, meta- data 
and sensor- based data. The system also includes an economic anal-
ysis and benchmarking process. It enables the farmer to monitor 
and optimise the costs of plant protection measures by means of 
comparison within and between farms. In this case, the particular 
components of the assistance system for SSWM (e.g. weed maps) to 
be used are defined solely by the farmer. We note that the possibility 
of monitoring the economic benefits of reduced herbicide use may 
improve the motivation to use more advanced technologies in the 
future.

7  | DEEPER INSIGHTS INTO WEED 
PHENOT YPING

Providing farmers with additional information on weeds, particularly, 
how they respond to management strategies could increase farmer 
interest in SSWM. Weeds— like all plants— are affected by complex 
genome, environment and management (GxExM) interactions, which 
ultimately determine their biotic and abiotic interactions and popu-
lation dynamics. Substantial research efforts have therefore been 
devoted to documenting the phenotypic plasticity of plant species 
(Nicotra et al., 2010). Among these, several studies on weeds have 
focused on phenotypic and genotypic variations in competitiveness, 
fitness (Matzrafi et al., 2017; Vila- Aiub et al., 2009) and herbicide 
resistance (Comont et al., 2020), yet, only few have used automated 
phenotyping technologies (Großkinsky et al., 2015). Nonetheless, 
the work that did use automated methods has uncovered complex 

interactions between weeds in their dynamic environment. The 
combination of high spatial and temporal resolution with the high 
capacity of automated weed phenotyping systems provides new 
opportunities to obtain detailed and supplementary information on 
weed characteristics that can be used for future integrated weed 
management. These new technological opportunities to monitor 
thousands of weed plants may increase our understanding of weed 
species' competitiveness and adaptation to different climates, soils 
and cropping systems.

Pioneering weed phenotyping studies have addressed issues of 
weed herbicide resistance and have begun to link variations in phe-
notype and genotype to variations in contemporary and historical 
management regimes (Comont et al., 2020). In particular, Comont 
and Neve (2020) have been able to unravel the drivers of target site 
and non- target site herbicide resistance and have demonstrated 
that herbicide mixtures and herbicide diversity can drive the evo-
lution of a type of generalist, metabolic resistance. They have done 
so by integrating weed maps on a national scale, phenotypic and 
genetics- based assays of herbicide resistance, and long- term field 
management datasets at individual sites (Comont and Neve, 2020). 
Emerging approaches such as these can be augmented in the future 
by the automation of data collection for weed mapping (Lambert 
et al., 2018) and of sensor- based identification of herbicide resis-
tance (Linn et al., 2019). Furthermore, the rapid development of 
weed phenotyping presents scientists with new opportunities to 
share large datasets and to work more closely on data relating to 
weed ecology and evolutionary biology (Mahaut et al., 2020).

8  | FUNDING AND DOCUMENTATION

Much of SSWM research is funded by short- term grants, which 
makes it extremely difficult to establish strong research groups with 
long- term perspectives. The life cycle of funding fails to support 
skill and research capacity- building and collaboration timelines. 
Continuity is key here. To motivate scientists and funding agencies, 
it is important to document ‘successful application cases’— what has 
actually been achieved, what remains to be further improved and 
what has the potential for commercialisation (Christensen et al., 
2009). In this context, a ‘successful application case’ is one charac-
terised by the three key elements of SSWM, that is, weed monitor-
ing, translation of field observations into decision guidelines and 
precision weed control. Table 1 lists examples of successful appli-
cation cases, ranked according to maturity level, ranging from (1) 
‘proof- of- concept demonstrated under laboratory conditions’ to (5) 
‘fully adopted by end- users’. The examples given in Table 1 cover 
a vast range of crops, sensing systems and precision levels. From 
these examples, it appears that tractor- mounted sensors and on- 
the- go (real- time) SSWM implements have been most successful 
so far. To facilitate the wider use of SSWM, the following recom-
mendations should be put into practice: The flexibility of SSWM, in 
terms of equipment cost, cropping system, application timing and 
control mechanisms, should be highlighted. Farmers, stakeholders 
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and regulators should be made aware of the potential SSWM solu-
tions for various cropping scenarios. Efforts should be made to fa-
miliarise fellow scientists from other disciplines, who are not always 
aware of the current SSWM status and its potential benefits, with 
this research field. Publications reporting on successful or even 
unsuccessful studies and projects should disseminated widely via 
platforms ranging from peer- reviewed journals through local farmer 
publications to public online web pages. Increasing the awareness 
of different audiences to the successes of SSWM projects, and the 

contributions they offer toward the overall goal of reducing herbi-
cide usage, might assist in boosting funding and ensuring research 
continuity.

In conclusion, reluctance of farmers to adopt SSWM is not lim-
ited exclusively to economic and technological reasons; deeper 
social aspects are involved. We must therefore involve the agricul-
tural community in the development and assimilation stages of new 
SSWM tools. By so doing, a more technology- oriented generation 
of farmers, likely to be more open to the adoption of new ideas, 

TA B L E  1   Examples of Site- Specific Weed Management (SSWM) cases with maturity levels ranging from (1) ‘Proof- of- concept 
demonstrated in laboratory conditions’ to (5) ‘Fully adopted by end- users’. (1 = Proof- of- concept demonstrated in laboratory conditions; 
2 = Proof- of- concept demonstrated in field conditions; 3 = Tested in field by end- users; 4; Available at the market, but limited uptake by 
end- users; 5 = Fully adopted by end- users)

Weed control tactic Application typea 
Crop species (target 
weeds) Level Platforms Reference

Herbicides 
(non- selective)

Real- time (on/off) Cereal stubble and close 
to harvest (all green 
weeds)

5 Field sprayer with WeedSeeker 
units

Yorgey et al. 
(2016)

Herbicides 
(selective)

Map- based (VAR) Cereals (seed- propagated 
juvenile weeds)

3 ATV- mounted camera- > machine 
vision algorithm- > application file 
- > farmers’ field sprayer

Somerville et al. 
(2019)

Herbicides 
(selective)

Map- based (on/off) Winter wheat, maize 2 Manual mapping- > prescription 
maps- > GPS- controlled multiple- 
tank sprayer

Gutjahr et al. 
(2012)

Herbicides 
(selective)

Real- time (on/off) Primarily cereals (seed- 
propagated juvenile 
weeds)

3 Tractor- mounted Berge et al. 
(2012)

Physical (weed 
harrowing)

Real- time (VAR) Maize (seed- propagated 
juvenile weeds)

2 Tractor- mounted Rueda- Ayala 
et al. (2015)

Hoeing Real- time (on/off) Row cropsb  (intra- row 
weeds)

5 Tractor- mounted Merfield (2016)

Physical (hoeing) Real- time (on/off) Row crops (inter- row 
weeds)

5 Tractor- mounted Melander et al. 
(2015)

Thermal (flaming) Real- time (on/off) Row crops (intra- row 
weeds)

2 Tractor- mounted Lati et al. (2015)

Herbicide Real- time (on/off) Row cropsc  2 Tractor- mounted Westwood et al. 
(2018)

Physical Real- time (on/off) Sugar beet 2 Self- propelled robot Åstrand and 
Baerveldt 
(2002)

Herbicide Real- time (on/off) Field vegetables 
(volunteer potato)d 

4 Tractor- mounted Merfield (2016)

Herbicides (non- 
selective and 
selective)

Real- time (on/off) Seeded root vegetables 2– 3 Self- propelled robot Utstumo et al. 
(2018)

Combination of two 
tactics (spraying 
and stamping)

Real- time (on/off) Sugar beet (intra- row 
weeds)

2 Self- propelled (?) robot Wu et al. (2020)

Physical (chopping) Real- time (on/off) Grassland (taproot of 
docks)

2 Self- propelled robot van Evert et al. 
(2020)

aMap- based or on- the- go (on/off) or variable rate of application (VRA). 
bTransplanted crops such as lettuce, cabbage, celery. 
cInitially the machine is aimed at treating potatoes growing in carrots, parsnips, onions or leeks, but the interest and usage requirements are 
spreading to general weed control in all varieties of crops. 
dFor example, cotton. 
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will evolve. Stronger interactions between farmer and scientist net-
works should be established, and mutual goals should be identified. 
The objectives of SSWM research should be updated, and provision 
to farmers of decision- making tools should become the primary 
target. In addition, the sharing of ideas and data can improve the 
performance of advanced DL and other image- driven models and 
increase the robustness of SSWM tools, while phenotyping- gained 
insights and data may increase their attractiveness. Finally, the doc-
umentation of SSWM studies and developments must be dissem-
inated to a wider audience with the aim to cultivate collaborative 
efforts, expand funding options and ensure research continuity.
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