129 research outputs found

    Performance of an industrial biofilter from a composting plant in the removal of ammonia and VOCs after material replacement

    Get PDF
    BACKGROUND: Biofiltration is a suitable odor reduction technique for the treatment of gaseous emissions from composting processes, but little is known about the start-up of full-scale biofilters after material replacement and their performance after several years of operation. - RESULTS: Biofilter material (wood chips used previously as bulking agent in a composting process) can effectively remove ammonia and most of the volatile organic compounds (VOCs) content, achieving removal efficiencies greater than 70% for VOCs and near 90% for ammonia immediately after material replacement. These removal efficiencies were maintained for several months after material replacement. In the studied full-scale biofilter no lag phase was observed in the removal of ammonia whereas in the case of VOCs different patterns were detected during biofilter start-up. For the old biofilter material, after 4 years of operation, a statistically significant decrease of removal efficiency for ammonia in comparison with the new material was detected. No statistically significant differences were found in the case of VOCs. - CONCLUSIONS: Data on the emissions of several pollutants from biofilters treating composting exhaust gases have been systematically obtained. The tested filtering media presented adequate properties for biofiltration of gases emitted during the composting process

    The changing sources of polychlorinated dibenzo-p-dioxins and furans in sediments and the ecological risk for nekton in the lower Passaic River and Newark Bay, New Jersey, USA

    Get PDF
    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were measured in sediments (surface and deeper sediments) and porewater of the lower Passaic River and Newark Bay (NJ, USA) to apportion their sources and conduct an ecological risk assessment. Positive matrix factorization (PMF) was applied to identify sources of PCDD/Fs. Five source profiles were extracted from the PMF model applied to the sediment samples including chloranil, combustion, polychlorinated biphenyl impurities, mixed urban sources and the historical contamination from the former Diamond Alkali plant (DAP). The ecological risk assessment was estimated using several lines of evidence depending on site specific data (blue crab and fish samples representing different feeding habits and positions in the trophic wood web of the river). Porewater concentrations gave the best estimates of lipid concentrations especially in the blue crab samples (with an average factor difference of 3.8). Calculated hazard quotients (HQ) for the fish samples and blue crab were \u3e 1 based on the no-effect concentration and tissue screening concentration approaches. At the same time, calculated porewater toxic units were \u3e 1 and sediment concentrations exceeded the published sediment quality guidelines for the protection of fish and benthic species indicating the existence of significant risk to the aquatic life in the Passaic River. Accordingly, further actions and control measures are needed to reduce the emission of PCDD/Fs from ongoing sources

    Detection, Composition and Treatment of Volatile Organic Compounds from Waste Treatment Plants

    Get PDF
    Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities

    Movement of Soil-Applied Imidacloprid and Thiamethoxam into Nectar and Pollen of Squash (Cucurbita pepo)

    Get PDF
    There has been recent interest in the threat to bees posed by the use of systemic insecticides. One concern is that systemic insecticides may translocate from the soil into pollen and nectar of plants, where they would be ingested by pollinators. This paper reports on the movement of two such systemic neonicotinoid insecticides, imidacloprid and thiamethoxam, into the pollen and nectar of flowers of squash (Cucurbita pepo cultivars “Multipik,” “Sunray” and “Bush Delicata”) when applied to soil by two methods: (1) sprayed into soil before seeding, or (2) applied through drip irrigation in a single treatment after transplant. All insecticide treatments were within labeled rates for these compounds. Pollen and nectar samples were analyzed using a standard extraction method widely used for pesticides (QuEChERS) and liquid chromatography mass spectrometric analysis. The concentrations found in nectar, 10±3 ppb (mean ± s.d) for imidacloprid and 11±6 ppb for thiamethoxam, are higher than concentrations of neonicotinoid insecticides in nectar of canola and sunflower grown from treated seed, and similar to those found in a recent study of neonicotinoids applied to pumpkins at transplant and through drip irrigation. The concentrations in pollen, 14±8 ppb for imidacloprid and 12±9 ppb for thiamethoxam, are higher than those found for seed treatments in most studies, but at the low end of the range found in the pumpkin study. Our concentrations fall into the range being investigated for sublethal effects on honey bees and bumble bees

    Multiple Routes of Pesticide Exposure for Honey Bees Living Near Agricultural Fields

    Get PDF
    Populations of honey bees and other pollinators have declined worldwide in recent years. A variety of stressors have been implicated as potential causes, including agricultural pesticides. Neonicotinoid insecticides, which are widely used and highly toxic to honey bees, have been found in previous analyses of honey bee pollen and comb material. However, the routes of exposure have remained largely undefined. We used LC/MS-MS to analyze samples of honey bees, pollen stored in the hive and several potential exposure routes associated with plantings of neonicotinoid treated maize. Our results demonstrate that bees are exposed to these compounds and several other agricultural pesticides in several ways throughout the foraging period. During spring, extremely high levels of clothianidin and thiamethoxam were found in planter exhaust material produced during the planting of treated maize seed. We also found neonicotinoids in the soil of each field we sampled, including unplanted fields. Plants visited by foraging bees (dandelions) growing near these fields were found to contain neonicotinoids as well. This indicates deposition of neonicotinoids on the flowers, uptake by the root system, or both. Dead bees collected near hive entrances during the spring sampling period were found to contain clothianidin as well, although whether exposure was oral (consuming pollen) or by contact (soil/planter dust) is unclear. We also detected the insecticide clothianidin in pollen collected by bees and stored in the hive. When maize plants in our field reached anthesis, maize pollen from treated seed was found to contain clothianidin and other pesticides; and honey bees in our study readily collected maize pollen. These findings clarify some of the mechanisms by which honey bees may be exposed to agricultural pesticides throughout the growing season. These results have implications for a wide range of large-scale annual cropping systems that utilize neonicotinoid seed treatments

    Die oekonomische Situation der deutschen Vollblutzucht

    No full text
    .Untersucht wurden 12 Vollblutgestuete, die in 4 Gestuetsgruppen eingeteilt wurden (ueberwiegend Mutterstuten, Pensionspferdeanteil ueber bzw. unter 50%, ueberwiegend Rennpferde). Insgesamt ist die oekonomische Situation in der deutschen Vollblutzucht nicht zufriedenstellend. Im Durchschnitt wurde ein Verlust von ca. 366 500.- DM pro Gestuet und Jahr erwirtschaftetSIGLEAvailable from: Giessen Univ. (Germany, F.R.). Universitaetsbibliothek / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore