6,996 research outputs found

    Stellar and Molecular Radii of a Mira Star: First Observations with the Keck Interferometer Grism

    Get PDF
    Using a new grism at the Keck Interferometer, we obtained spectrally dispersed (R ~ 230) interferometric measurements of the Mira star R Vir. These data show that the measured radius of the emission varies substantially from 2.0-2.4 microns. Simple models can reproduce these wavelength-dependent variations using extended molecular layers, which absorb stellar radiation and re-emit it at longer wavelengths. Because we observe spectral regions with and without substantial molecular opacity, we determine the stellar photospheric radius, uncontaminated by molecular emission. We infer that most of the molecular opacity arises at approximately twice the radius of the stellar photosphere.Comment: 12 pages, including 3 figures. Accepted by ApJ

    Strong Near-Infrared Emission Interior to the Dust-Sublimation Radius of Young Stellar Objects MWC275 and AB Aur

    Get PDF
    Using the longest optical-interferometeric baselines currently available, we have detected strong near-infrared (NIR) emission from inside the dust-destruction radius of Herbig Ae stars MWC275 and AB Aur. Our sub-milli-arcsecond resolution observations unambiguously place the emission between the dust-destruction radius and the magnetospheric co-rotation radius. We argue that this new component corresponds to hot gas inside the dust-sublimation radius, confirming recent claims based on spectrally-resolved interferometry and dust evaporation front modeling.Comment: 12 pages, 4 figures, Accepted for publication in ApJ

    New insights on the AU-scale circumstellar structure of FU Orionis

    Full text link
    We report new near-infrared, long-baseline interferometric observations at the AU scale of the pre-main-sequence star FU Orionis with the PTI, IOTA and VLTI interferometers. This young stellar object has been observed on 42 nights over a period of 6 years from 1998 to 2003. We have obtained 287 independent measurements of the fringe visibility with 6 different baselines ranging from 20 to 110 meters in length, in the H and K bands. Our extensive (u,v)-plane coverage, coupled with the published spectral energy distribution data, allows us to test the accretion disk scenario. We find that the most probable explanation for these observations is that FU Ori hosts an active accretion disk whose temperature law is consistent with standard models. We are able to constrain the geometry of the disk, including an inclination of 55 deg and a position angle of 47 deg. In addition, a 10 percent peak-to-peak oscillation is detected in the data (at the two-sigma level) from the longest baselines, which we interpret as a possible disk hot-spot or companion. However, the oscillation in our best data set is best explained with an unresolved spot located at a projected distance of 10 AU at the 130 deg position angle and with a magnitude difference of DeltaK = 3.9 and DeltaH = 3.6 mag moving away from the center at a rate of 1.2 AU/yr. we propose to interpret this spot as the signature of a companion of the central FU Ori system on an extremely eccentric orbit. We speculate that the close encounter of this putative companion and the central star could be the explanation of the initial photometric rise of the luminosity of this object

    A low optical depth region in the inner disk of the HerbigAe star HR5999

    Get PDF
    Circumstellar disks surrounding young stars are known to be the birthplaces of planets, and the innermost astronomical unit is of particular interest. We present new long-baseline spectro-interferometric observations of the HerbigAe star, HR5999, obtained in the H and K bands with the AMBER instrument at the VLTI, and aim to produce near-infrared images at the sub-AU spatial scale. We spatially resolve the circumstellar material and reconstruct images using the MiRA algorithm. In addition, we interpret the interferometric observations using models that assume that the near-infrared excess is dominated by the emission of a circumstellar disk. We compare the images reconstructed from the VLTI measurements to images obtained using simulated model data. The K-band image reveals three main elements: a ring-like feature located at ~0.65 AU, a low surface brightness region inside, and a central spot. At the maximum angular resolution of our observations (1.3 mas), the ring is resolved while the central spot is only marginally resolved, preventing us from revealing the exact morphology of the circumstellar environment. We suggest that the ring traces silicate condensation, i.e., an opacity change, in a circumstellar disk around HR 5999. We build a model that includes a ring at the silicate sublimation radius and an inner disk of low surface brightness responsible for a large amount of the near-infrared continuum emission. The model successfully fits the SED, visibilities, and closure phases, and provides evidence of a low surface brightness region inside the silicate sublimation radius. This study provides additional evidence that in HerbigAe stars, there is material in a low surface brightness region, probably a low optical depth region, located inside the silicate sublimation radius and of unknown nature.Comment: 11 pages, 10 figure

    Robust Online Monitoring of Signal Temporal Logic

    Full text link
    Signal Temporal Logic (STL) is a formalism used to rigorously specify requirements of cyberphysical systems (CPS), i.e., systems mixing digital or discrete components in interaction with a continuous environment or analog com- ponents. STL is naturally equipped with a quantitative semantics which can be used for various purposes: from assessing the robustness of a specification to guiding searches over the input and parameter space with the goal of falsifying the given property over system behaviors. Algorithms have been proposed and implemented for offline computation of such quantitative semantics, but only few methods exist for an online setting, where one would want to monitor the satisfaction of a formula during simulation. In this paper, we formalize a semantics for robust online monitoring of partial traces, i.e., traces for which there might not be enough data to decide the Boolean satisfaction (and to compute its quantitative counterpart). We propose an efficient algorithm to compute it and demonstrate its usage on two large scale real-world case studies coming from the automotive domain and from CPS education in a Massively Open Online Course (MOOC) setting. We show that savings in computationally expensive simulations far outweigh any overheads incurred by an online approach

    The Wide Integral Field Infrared Spectrograph: Commissioning Results and On-sky Performance

    Full text link
    We have recently commissioned a novel infrared (0.91.70.9-1.7 μ\mum) integral field spectrograph (IFS) called the Wide Integral Field Infrared Spectrograph (WIFIS). WIFIS is a unique instrument that offers a very large field-of-view (50^{\prime\prime} x 20^{\prime\prime}) on the 2.3-meter Bok telescope at Kitt Peak, USA for seeing-limited observations at moderate spectral resolving power. The measured spatial sampling scale is 1×1\sim1\times1^{\prime\prime} and its spectral resolving power is R2,500R\sim2,500 and 3,0003,000 in the zJzJ (0.91.350.9-1.35 μ\mum) and HshortH_{short} (1.51.71.5-1.7 μ\mum) modes, respectively. WIFIS's corresponding etendue is larger than existing near-infrared (NIR) IFSes, which are mostly designed to work with adaptive optics systems and therefore have very narrow fields. For this reason, this instrument is specifically suited for studying very extended objects in the near-infrared such as supernovae remnants, galactic star forming regions, and nearby galaxies, which are not easily accessible by other NIR IFSes. This enables scientific programs that were not originally possible, such as detailed surveys of a large number of nearby galaxies or a full accounting of nucleosynthetic yields of Milky Way supernova remnants. WIFIS is also designed to be easily adaptable to be used with larger telescopes. In this paper, we report on the overall performance characteristics of the instrument, which were measured during our commissioning runs in the second half of 2017. We present measurements of spectral resolving power, image quality, instrumental background, and overall efficiency and sensitivity of WIFIS and compare them with our design expectations. Finally, we present a few example observations that demonstrate WIFIS's full capability to carry out infrared imaging spectroscopy of extended objects, which is enabled by our custom data reduction pipeline.Comment: Published in the Proceedings of SPIE Astronomical Telescopes and Instrumentation 2018. 17 pages, 13 figure

    Uniformity in the Wiener-Wintner theorem for nilsequences

    Full text link
    We prove a uniform extension of the Wiener-Wintner theorem for nilsequences due to Host and Kra and a nilsequence extension of the topological Wiener-Wintner theorem due to Assani. Our argument is based on (vertical) Fourier analysis and a Sobolev embedding theorem.Comment: v3: 18 p., proof that the cube construction produces compact homogeneous spaces added, measurability issues in the proof of Theorem 1.5 addressed. We thank the anonymous referees for pointing out these gaps in v

    On the origin of ionising photons emitted by T Tauri stars

    Full text link
    We address the issue of the production of Lyman continuum photons by T Tauri stars, in an attempt to provide constraints on theoretical models of disc photoionisation. By treating the accretion shock as a hotspot on the stellar surface we show that Lyman continuum photons are produced at a rate approximately three orders of magnitude lower than that produced by a corresponding black body, and that a strong Lyman continuum is only emitted for high mass accretion rates. When our models are extended to include a column of material accreting on to the hotspot we find that the accretion column is extremely optically thick to Lyman continuum photons. Further, we find that radiative recombination of hydrogen atoms within the column is not an efficient means of producing photons with energies greater than 13.6eV, and find that an accretion column of any conceivable height suppresses the emission of Lyman continuum photons to a level below or comparable to that expected from the stellar photosphere. The photospheric Lyman continuum is itself much too weak to affect disc evolution significantly, and we find that the Lyman continuum emitted by an accretion shock is similarly unable to influence disc evolution significantly. This result has important consequences for models which use photoionisation as a mechanism to drive the dispersal of circumstellar discs, essentially proving that an additional source of Lyman continuum photons must exist if disc photoionisation is to be significant.Comment: 6 pages, 4 figures. Accepted for publication in MNRA

    Investigating situated cultural practices through cross-sectoral digital collaborations: policies, processes, insights

    Get PDF
    The (Belfast) Good Friday Agreement represents a major milestone in Northern Ireland's recent political history, with complex conditions allowing for formation of a ‘cross-community’ system of government enabling power sharing between parties representing Protestant/loyalist and Catholic/nationalist constituencies. This article examines the apparent flourishing of community-focused digital practices over the subsequent ‘post-conflict’ decade, galvanised by Northern Irish and EU policy initiatives armed with consolidating the peace process. Numerous digital heritage and storytelling projects have been catalysed within programmes aiming to foster social processes, community cohesion and cross-community exchange. The article outlines two projects—‘digital memory boxes’ and ‘interactive galleon’—developed during 2007–2008 within practice-led PhD enquiry conducted in collaboration with the Nerve Centre, a third-sector media education organisation. The article goes on to critically examine the processes involved in practically realising, and creatively and theoretically reconciling, community-engaged digital production in a particular socio-political context of academic-community collaboration
    corecore