104 research outputs found

    DMXL2 drives epithelial to mesenchymal transition in hormonal therapy resistant breast cancer through Notch hyper-activation

    Get PDF
    The acquisition of endocrine therapy resistance in estrogen receptor a (ERa) breast cancer patients represents a major clinical problem. Notch signalling has been extensively linked to breast cancer especially in patients who fail to respond to endocrine therapy. Following activation, Notch intracellular domain is released and enters the nucleus where activates transcription of target genes. The numerous steps that cascade after activation of the receptor complicate using Notch as biomarker. Hence, this warrants the development of reliable indicators of Notch activity. DMXL2 is a novel regulator of Notch signalling not yet investigated in breast cancer. Here, we demonstrate that DMXL2 is overexpressed in a subset of endocrine therapy resistant breast cancer cell lines where it promotes epithelial to mesenchymal transition through hyper-activation of Notch signalling via V-ATPase dependent acidification. Following DMXL2 depletion or treatment with Bafilomycin A1, both EMT targets and Notch signalling pathway significantly decrease. We show for the first time that DMXL2 protein levels are significantly increased in ERa positive breast cancer patients that progress after endocrine therapy. Finally, we demonstrate that DMXL2 is a transmembrane protein with a potential extra-cellular domain. These findings identify DMXL2 as a novel, functional biomarker for ERa positive breast cancer

    DNA methylation changes in response to neoadjuvant chemotherapy are associated with breast cancer survival

    Get PDF
    Background: Locally advanced breast cancer is a heterogeneous disease with respect to response to neoadjuvant chemotherapy (NACT) and survival. It is currently not possible to accurately predict who will benefit from the specific types of NACT. DNA methylation is an epigenetic mechanism known to play an important role in regulating gene expression and may serve as a biomarker for treatment response and survival. We investigated the potential role of DNA methylation as a prognostic marker for long-term survival (> 5 years) after NACT in breast cancer. Methods: DNA methylation profiles of pre-treatment (n = 55) and post-treatment (n = 75) biopsies from 83 women with locally advanced breast cancer were investigated using the Illumina HumanMethylation450 BeadChip. The patients received neoadjuvant treatment with epirubicin and/or paclitaxel. Linear mixed models were used to associate DNA methylation to treatment response and survival based on clinical response to NACT (partial response or stable disease) and 5-year survival, respectively. LASSO regression was performed to identify a risk score based on the statistically significant methylation sites and Kaplan–Meier curve analysis was used to estimate survival probabilities using ten years of survival follow-up data. The risk score developed in our discovery cohort was validated in an independent validation cohort consisting of paired pre-treatment and post-treatment biopsies from 85 women with locally advanced breast cancer. Patients included in the validation cohort were treated with either doxorubicin or 5-FU and mitomycin NACT. Results: DNA methylation patterns changed from before to after NACT in 5-year survivors, while no significant changes were observed in non-survivors or related to treatment response. DNA methylation changes included an overall loss of methylation at CpG islands and gain of methylation in non-CpG islands, and these changes affected genes linked to transcription factor activity, cell adhesion and immune functions. A risk score was developed based on four methylation sites which successfully predicted long-term survival in our cohort (p = 0.0034) and in an independent validation cohort (p = 0.049). Conclusion: Our results demonstrate that DNA methylation patterns in breast tumors change in response to NACT. These changes in DNA methylation show potential as prognostic biomarkers for breast cancer survival.publishedVersio

    Olaparib monotherapy as primary treatment in unselected triple negative breast cancer

    Get PDF
    Background - The antitumor efficacy of PARP inhibitors (PARPi) for breast cancer patients harboring germline BRCA1/2 (gBRCA1/2) mutations is well established. While PARPi monotherapy was ineffective in patients with metastatic triple negative breast cancer (TNBC) wild type for BRCA1/2, we hypothesized that PARPi may be effective in primary TNBCs without previous chemotherapy exposure. Patients and methods - In the phase II PETREMAC trial, patients with primary TNBC >2 cm received olaparib for up to 10 weeks before chemotherapy. Tumor biopsies collected before and after olaparib underwent targeted DNA sequencing (360 genes) and BRCA1 methylation analyses. In addition, BRCAness (multiplex ligation-dependent probe amplification), PAM50 gene expression, RAD51 foci, tumor-infiltrating lymphocytes (TILs) and PD-L1 analyses were performed on pretreatment samples. Results - The median pretreatment tumor diameter was 60 mm (range 25-112 mm). Eighteen out of 32 patients obtained an objective response (OR) to olaparib (56.3%). Somatic or germline mutations affecting homologous recombination (HR) were observed in 10/18 responders [OR 55.6%, 95% confidence interval (CI) 33.7-75.4] contrasting 1/14 non-responders (OR 7.1%; CI 1.3-31.5, P = 0.008). Among tumors without HR mutations, 6/8 responders versus 3/13 non-responders revealed BRCA1 hypermethylation (P = 0.03). Thus, 16/18 responders (88.9%, CI 67.2-96.9), in contrast to 4/14 non-responders (28.6%, CI 11.7-54.7, P = 0.0008), carried HR mutations and/or BRCA1 methylation. Excluding one gPALB2 and four gBRCA1/2 mutation carriers, 12/14 responders (85.7%, CI 60.1-96.0) versus 3/13 non-responders (23.1%, CI 8.2-50.3, P = 0.002) carried somatic HR mutations and/or BRCA1 methylation. In contrast to BRCAness signature or basal-like subtype, low RAD51 scores, high TIL or high PD-L1 expression all correlated to olaparib response. Conclusion - Olaparib yielded a high clinical response rate in treatment-naïve TNBCs revealing HR deficiency, beyond germline HR mutations

    Homologous Recombination Deficiency Across Subtypes of Primary Breast Cancer

    Get PDF
    Purpose - Homologous recombination deficiency (HRD) is highly prevalent in triple-negative breast cancer (TNBC) and associated with response to PARP inhibition (PARPi). Here, we studied the prevalence of HRD in non-TNBC to assess the potential for PARPi in a wider group of patients with breast cancer. Methods - HRD status was established using targeted gene panel sequencing (360 genes) and BRCA1 methylation analysis of pretreatment biopsies from 201 patients with primary breast cancer in the phase II PETREMAC trial (ClinicalTrials.gov identifier: NCT02624973). HRD was defined as mutations in BRCA1, BRCA2, BRIP1, BARD1, or PALB2 and/or promoter methylation of BRCA1 (strict definition; HRD-S). In secondary analyses, a wider definition (HRD-W) was used, examining mutations in 20 additional genes. Furthermore, tumor BRCAness (multiplex ligation-dependent probe amplification), PAM50 subtyping, RAD51 nuclear foci to test functional HRD, tumor-infiltrating lymphocyte (TIL), and PD-L1 analyses were performed. Results - HRD-S was present in 5% of non-TNBC cases (n = 9 of 169), contrasting 47% of the TNBC tumors (n = 15 of 32). HRD-W was observed in 23% of non-TNBC (n = 39 of 169) and 59% of TNBC cases (n = 19 of 32). Of 58 non-TNBC and 30 TNBC biopsies examined for RAD51 foci, 4 of 4 (100%) non-TNBC and 13 of 14 (93%) TNBC cases classified as HRD-S had RAD51 low scores. In contrast, 4 of 17 (24%) non-TNBC and 15 of 19 (79%) TNBC biopsies classified as HRD-W exhibited RAD51 low scores. Of nine non-TNBC tumors with HRD-S status, only one had a basal-like PAM50 signature. There was a high concordance between HRD-S and either BRCAness, high TIL density, or high PD-L1 expression (each P Conclusion - The prevalence of HRD in non-TNBC suggests that therapy targeting HRD should be evaluated in a wider breast cancer patient population. Strict HRD criteria should be implemented to increase diagnostic precision with respect to functional HRD

    Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiogenesis is the formation of neovasculature from a pre-existing vascular network. Progression of solid tumors including lung cancer is angiogenesis-dependent. We previously introduced a bioinformatics-based methodology to identify endogenous anti-angiogenic peptide sequences, and validated these predictions <it>in vitro </it>in human umbilical vein endothelial cell (HUVEC) proliferation and migration assays.</p> <p>Methods</p> <p>One family of peptides with high activity is derived from the α-fibrils of type IV collagen. Based on the results from the <it>in vitro </it>screening, we have evaluated the ability of a 20 amino acid peptide derived from the α5 fibril of type IV collagen, pentastatin-1, to suppress vessel growth in an angioreactor-based directed <it>in vivo </it>angiogenesis assay (DIVAA). In addition, pentastatin-1 suppressed tumor growth with intraperitoneal peptide administration in a small cell lung cancer (SCLC) xenograft model in nude mice using the NCI-H82 human cancer cell line.</p> <p>Results</p> <p>Pentastatin-1 decreased the invasion of vessels into angioreactors <it>in vivo </it>in a dose dependent manner. The peptide also decreased the rate of tumor growth and microvascular density <it>in vivo </it>in a small cell lung cancer xenograft model.</p> <p>Conclusions</p> <p>The peptide treatment significantly decreased the invasion of microvessels in angioreactors and the rate of tumor growth in the xenograft model, indicating potential treatment for angiogenesis-dependent disease, and for translational development as a therapeutic agent for lung cancer.</p

    Clinical Efficacy and Safety of Bevacizumab Monotherapy in Patients with Metastatic Melanoma: Predictive Importance of Induced Early Hypertension

    Get PDF
    Background: VEGF driven angiogenesis plays a key role in cancer progression. We determined the clinical efficacy of bevacizumab monotherapy in patients with metastatic melanoma. Methods and Findings: Thirty-five patients with metastatic melanoma in progression were enrolled in this phase II, single arm clinical trial. Each patient received bevacizumab monotherapy 10 mg/kg q14 d until intolerable toxicity or disease progression occurred. Clinical efficacy was evaluated as objective response, disease control (DC), and survival. We observed one complete (3%) and 5 partial (14%) responses. In addition, 5 patients experienced stable disease >6 months (14%) while 24 patients had progressive disease (PD, 69%), corresponding to a total DC at 6 months in 11 out of 35 patients (31%). Median progression free survival (PFS) was 2.14 months and median overall survival (OS) was 9 months (1.12–49). Seven of the 11 patients experiencing DC developed early hypertension (<2 months) compared to 3/24 of patients with PD (P = 0.001), and hypertension was associated with PFS (P = 0.005) and OS (P = 0.013). Conclusion: Bevacizumab monotherapy demonstrated promising clinical efficacy in patients with metastatic melanoma with disease control in 31% of the patients. Induced early hypertension was a marker for clinical efficacy of bevacizumab
    corecore