52 research outputs found

    Positional, metric, and curvature control for constraint-based surface deformation

    Get PDF
    We present a geometry processing framework that allows direct manipulation or preservation of positional, metric, and curvature constraints anywhere on the surface of a geometric model. Target values for these properties can be specified point-wise or as integrated quantities over curves and surface patches embedded in the shape. For example, the user can draw several curves on the surface and specify desired target lengths, manipulate the normal curvature along these curves, or modify the area or principal curvature distribution of arbitrary surface patches. This user input is converted into a set of non-linear constraints. A global optimization finds the new deformed surface that best satisfies the constraints, while minimizing adaptable measures for metric and curvature distortion that provide explicit control of the deformation semantics. We illustrate how this approach enables flexible surface processing and shape editing operations not available in current systems. © 2008 The Eurographics Association and Blackwell Publishing Ltd

    Curvature-domain shape processing

    Get PDF
    We propose a framework for 3D geometry processing that provides direct access to surface curvature to facilitate advanced shape editing, filtering, and synthesis algorithms. The central idea is to map a given surface to the curvature domain by evaluating its principle curvatures, apply filtering and editing operations to the curvature distribution, and reconstruct the resulting surface using an optimization approach. Our system allows the user to prescribe arbitrary principle curvature values anywhere on the surface. The optimization solves a nonlinear least-squares problem to find the surface that best matches the desired target curvatures while preserving important properties of the original shape. We demonstrate the effectiveness of this processing metaphor with several applications, including anisotropic smoothing, feature enhancement, and multi-scale curvature editing. © 2008 The Eurographics Association and Blackwell Publishing Ltd

    Darboux cyclides and webs from circles

    Full text link
    Motivated by potential applications in architecture, we study Darboux cyclides. These algebraic surfaces of order a most 4 are a superset of Dupin cyclides and quadrics, and they carry up to six real families of circles. Revisiting the classical approach to these surfaces based on the spherical model of 3D Moebius geometry, we provide computational tools for the identification of circle families on a given cyclide and for the direct design of those. In particular, we show that certain triples of circle families may be arranged as so-called hexagonal webs, and we provide a complete classification of all possible hexagonal webs of circles on Darboux cyclides.Comment: 34 pages, 20 figure

    anamorphic projection analogical digital algorithms

    Get PDF
    The study presents the first results of a wider research project dealing with the theme of "anamorphosis", a specific technique of geometric projection of a shape on a surface. Here we investigate how new digital techniques make it possible to simplify the anamorphic applications even in cases of projections on complex surfaces. After a short excursus of the most famous historical and contemporary applications, we propose several possible approaches for managing the geometry of anamorphic curves both in the field of descriptive geometry (by using interactive tools such as Cabri and GeoGebra) and during the complex surfaces realization process, from concept design to manufacture, through CNC systems (by adopting generative procedural algorithms elaborated in Grasshopper)

    Case Studies in Cost-Optimized Paneling of Architectural Freeform Surfaces

    Get PDF
    Paneling an architectural freeform surface refers to an approximation of the de- sign surface by a set of panels that can be manufactured using a selected technology at a reasonable cost, while respecting the design intent and achieving the desired aesthetic quality of panel layout and surface smoothness. Eigensatz and co-workers have recently introduced a computational solution to the paneling problem that allows handling large-scale freeform surfaces involving complex arrangements of thousands of panels. We extend this paneling algorithm to facilitate effective design exploration, in particular for local control of tolerance margins and the handling of sharp crease lines. We focus on the practical aspects relevant for the realization of large-scale freeform designs and evaluate the performance of the paneling algorithm with a number of case studies

    Deformations Preserving GauĂź Curvature

    Get PDF
    (Proceedings of LHMTS 2013)International audienceIn industrial surface generation, it is important to consider surfaces with minimal areas for two main reasons: these surfaces require less material than non-minimal surfaces, and they are cheaper to manufacture. Based on a prototype, a so-called masterpiece, the final product is created using small deformations to adapt a surface to the desired shape. We present a linear deformation technique preserving the total curvature of the masterpiece. In particular, we derive sufficient conditions for these linear deformations to be total curvature preserving when applied to the masterpiece. It is useful to preserve total curvature of a surface in order to minimise the amount of material needed, and to minimise bending energy

    Realtime Deformation of Constrained Meshes Using GPU

    Get PDF
    Constrained meshes play an important role in freeform architectural design, as they can represent panel layouts on freeform surfaces. It is challenging to perform realtime manipulation on such meshes, because all constraints need to be respected during the deformation while the shape quality needs to be maintained. This usually leads to nonlinear constrained optimization problems, which are challenging to solve in real time. In this paper, we present a GPU-based shape manipulation tool for constrained meshes, using the parallelizable algorithm proposed in [8]. We discuss the main challenges and solutions for the GPU implementation, and provide timing comparison against a CPU implementation of the algorithm. Our GPU implementation significantly outperforms the CPU version, allowing realtime handle-based deformation for large constrained meshes
    • …
    corecore