Realtime Deformation of Constrained Meshes
Using GPU

Alexandre Kaspar and Bailin Deng

Abstract Constrained meshes play an important role in freeform architectural de-
sign, as they can represent panel layouts on freeform surfaces. It is challenging to
perform realtime manipulation on such meshes, because all constraints need to be
respected during the deformation while the shape quality needs to be maintained.
This usually leads to nonlinear constrained optimization problems, which are chal-
lenging to solve in real time. In this paper, we present a GPU-based shape manip-
ulation tool for constrained meshes, using the parallelizable algorithm proposed in
[8]. We discuss the main challenges and solutions for the GPU implementation, and
provide timing comparison against a CPU implementation of the algorithm. Our
GPU implementation significantly outperforms the CPU version, allowing realtime
handle-based deformation for large constrained meshes.

1 Introduction

With the advances in computer-aided design tools, complex freeform shapes are
becoming more and more popular in architectural design nowadays. While digital
models can be easily created using a computer, the construction of such shapes re-
mains a challenge, due to limitation of fabrication technologies. To realize freeform
architectural designs at a reasonable cost, the design surfaces usually need to be de-
composed into panels of simple shapes that facilitate manufacturing. This process is
called rationalization, which amounts to approximating the NURBS-based design
surface using a set of panels subject to requirements such as approximation toler-
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Fig. 1: Panel layouts can be represented by polygonal meshes subject to geometric
constraints. Left: Yas Viceroy Hotel in Abu Dhabi, designed by Asymptote Archi-
tecture (image courtesy of Asymptote Architecture). Right: a quad mesh represent-
ing the hotel facade, with the constraint that the vertices of each face lie on a com-
mon plane. This constrained mesh represents a layout of planar quadrilateral panels
on the facade.

ance, panel types, aesthetics of panel layouts, etc. Rationalization usually involves
nonlinear optimization with a large number of variables, and is therefore computa-
tionally expensive [11].

From a designer’s point of view, it is important to explore different design shapes
and their corresponding panel layouts. One possible way is to modify the NURBS
design and perform rationalization for each new shape. Due to the heavy compu-
tational cost of rationalization, it is time-consuming to explore designs via this
approach. An alternative approach is to directly manipulate the panel shapes and
layouts, while respecting the shape requirements for panel types and maintaining
the aesthetics of the overall shape. In this way the user only explores panel layouts
that satisfy all the requirements, with intuitive feedback about what modifications
are possible under the given requirements. Such fabrication-aware shape explo-
ration methods for freeform architecture have been a popular research topic recently
[25, 6, 24, 26, 19, 9].

Usually a panel layout can be represented by a polygonal mesh, with mesh
faces representing the panels and mesh edges representing the panel boundaries.
The shape requirements for panel layout induce geometric constraints for mesh el-
ements. For example, a layout of planar panels corresponds to a polygonal mesh
where the vertices of each face are required to be coplanar (see Figure 1). There-
fore, manipulating the panel layout reduces to deforming the mesh while satisfying
certain geometric constraints and maintaining the shape quality. This usually leads
to a nonlinear constrained optimization problem for mesh vertex positions. Due to
the difficulty of the optimization, it is a challenging task to perform realtime manip-
ulation, especially for large meshes.

Bouaziz et al. [6] proposed a general framework for handle-based deformation of
meshes subject to soft constraints, formulated as a nonlinear least squares problem.
Utilizing projections of individual mesh elements onto their feasible configurations,
they propose an iterative solver that alternates between global linear system solving
and local mesh element projections. The projections are independent and can be
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executed in parallel, thus achieving significant speedup on multi-core processors.
When run on a multi-core CPU, the method achieves interactive results for meshes
with about 1K vertices, but still unable to handle large meshes. Recently, this method
was extended in [8] to allow both hard and soft constraints. The proposed numerical
solver consists of a series of simple subproblems similar to those in [6], enabling
speedup from parallelism. In this paper, we present an implementation of the method
in [8] on GPU using CUDA, which provides many more computational cores than
CPU. By carefully optimizing for performance, our implementation allows realtime
deformation of constrained meshes with up to 20K vertices and 20K constraints.

1.1 Related Work

Besides [6] and [8], other handle-based deformation methods for constrained meshes
have been developed in recent years. Zhao et al. [26] extended the shape space
exploration approach in [25], using curve handles for shape control. Vaxman [24]
proposed a method to deform polyhedral meshes while keeping their faces planar,
using affine transformations of mesh faces. The computation reduces to solving a
linear system for mesh vertex positions, allowing realtime deformation. The method
only works for polyhedral meshes (meshes with planar faces). Moreover, since only
affine transformations are allowed, only a subset of the feasible deformations are
considered, which limits the degree of freedom for shape control. Poranne et al. [19]
provided an optimization approach to deform polyhedral meshes, not limited to
affine transformations of faces. The deformation is computed through an alternating
least-squares approach similar to [6]. However, only face planarity constraints are
considered by the method. Deng et al. [9] proposed a framework to deform meshes
under hard constraints, with a focus on computing local deformations. Their frame-
work does not consider soft constraints. On the contrary, the deformation method in
this paper considers general shape constraints for meshes, and allows both soft and
hard constraints, providing more flexibility in shape manipulation.

Recently, computational design shape exploration tools have also been proposed
for other types of architecture, such as reciprocal frame structures [21] and building
layouts [1]. As these problems require other representations than polygonal meshes,
they cannot be handled by our method.

1.2 Overview

The rest of the paper is organized as follows. Section 2 briefly presents the method in
[8]. Section 3 gives an overview of the implementation of our system. Section 4 pro-
vides more details about the CUDA implementation. Finally, results are presented
in Section 5, followed by a discussion about limitation and future work in Section 6.
Section 7 concludes the paper.
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2 Overview of the Method

In this section, we give a brief overview of the problem formulation in [8], as well
as its numerical solution. Interested readers are referred to [8] for more details.

2.1 Problem Formulation

We consider polygonal meshes as a representation of panel layouts for freeform ar-
chitectural surfaces. The mesh is deformed by changing its vertex positions while
fixing its topology. During the deformation, the vertex positions are subject to cer-
tain soft constraints and/or hard constraints. To control the deformation, a user spec-
ifies target positions for some vertices using handles that are freely movable. When
the handles are moved, the mesh vertex positions are updated such that:

¢ The new mesh satisfies the soft constraints as much as possible, and satisfies the
hard constraints strictly;

* The handle vertices are close to their target positions;

* The non-handle vertices stay close to their original positions;

¢ The vertex deformation field is smooth across the mesh.

With a given topology, the shape of a mesh is determined by its vertex positions
P1,-..,py € R? where N is the number of vertices. A shape constraint involving m
vertex positions p;,,...,pi, can be represented by the condition (p;,,...,pi,) €C,
where C C R*" is the feasible set. We assume that the constraint is translation-
invariant, meaning that applying a common translation to all involved vertices does
not change the status of constraint satisfaction (which is the case for most shape
constraints relevant to freeform architecture). To facilitate numerical solution, we

introduce auxiliary variables y;,, ...,y;, € R, and rewrite the constraint as
(yil "'yim) GC? (l)
p, —mean(p;,,...,p;,) =Y,, for j=ii,... in, 2)
where mean(p;,,...,p;,) = —(pi, +---+Ppi,) is the barycenter of p;,,...,p;,. Note
m

that (2) is a linear condition, and can be written in a matrix form A, p =y, where
vector p € R3N packs all vertex positions, vector ye € R3" packs the auxiliary vari-
ables, and matrix A, € R¥3V_For each soft constraint with feasible set S, we in-
troduce auxiliary variables y ; € S to derive an equivalent condition Agp =y . Then
the constraint violation can be measured with a function Fg = [|[A p —y¢|/3. Sim-
ilarly for each hard constraint with feasible set H, we introduce auxiliary variables
¥,, € H to derive its equivalent condition A, p =y,, . Given N; soft constraints and
N hard constraints with feasible sets {S; [ j=1,...,Ns} and {Hy [k=1,...,Nn}
respectively, the vertex positions p are computed by the following optimization
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Ns Ns My
np}iyn WhEhandle + WeFclose + WeFfair + Z W§st + st (ysj) + Z O, (ka)
’ j=1 j=1 k=1
st. Bp=ypy.
Here y = [ys1 s Ysy o Yoy Yoy | packs all auxiliary variables for soft con-
s h

straints and hard constraints, F is the soft constraint violation function intro-

duced above, and side condition Bp = yy collects all linear relations from the
equivalent conditions of hard constraints, with B = [A; ,...,AL 1" and yy =
1 Ny

[yi ,...,yi ], Functions Fpandle, Felose> Frair measure the distance from handle
1 Ny

vertices to their target positions, the distance from non-handle vertices to their orig-
inal positions, and the smoothness of the vertex deformation field based on its Lapla-
cian, respectively,

Fhandle = Z ||pi *ti”%a Felose = Z Hpj *p?”%, Fyir = ||L(P*P0)||2,
iel’ jér

where I is the index set for handle vertices, t; is the target position for vertex i, p(}

is the original position for vertex j, p° packs the original positions for all vertices,

and L is the Laplacian matrix. The indicator function O, (y S,-) makes sure y s €S;

in the solution, with

0, ify, €8§;,

05 (¥s,)= -
o oo, otherwise.

Indicator function o, (ka) is defined in the same way. wp, we, we and w’ are posi-

tive weights trading off different terms. The optimization problem can be written in

matrix form as

N N Nh
min IDp—r|5+we|L(p—p°) |5+ ) WillAs,P—Ys, 5+, 05, (¥s,) + Y. 0, (vs,)
; j=1 j=r 7 k=1
s.t. Bp=yu, 3)
where
di13 r
D= ) r= 5
dylz ry

with Iz being the 3 x 3 identity matrix, and

[ mifier  fd ifier -
di = { /W. otherwise ’ = d;p) otherwise ’ fori=1,...N.
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2.2 Numerical Solution

2.2.1 Alternating Minimization

Without hard constraints, problem (3) reduces to minimizing quadratic terms with
indicator functions. It is solved by alternating between two steps until convergence

1. Projection: fix p, minimize over y;
2. Linear solve: fix y, minimize over p.

The minimization in Step 2 simply amounts to solving a symmetric positive definite
(SPD) sparse linear system, hence the name. For Step 1, the problem is separable for
auxiliary variables from different constraints, and is solved in parallel. Specifically,
we solve a set of independent subproblems, each of which is associated with one
constraint and has the following form

min [y, —x[3+ 0, (ye),
C

where C is the feasible set and y, are the auxiliary variables for the constraint.
The solution is the closest projection from x onto C, which we call the proximal
operator of C for input data x. For many constraints, we can derive the close-form
representation of the proximal operator. For example (see [6] for details):

* Coplanarity. This constraint requires n > 3 vertices to lie on a common plane. It
can be used to model planar panels, for example, by requiring the vertices of each
mesh face to be coplanar (see Figure 1). The proximal operator finds n coplanar
points yi,...,y, € R? which are closest to the input data xp,...,x, € R>. The
solution is

yi:xi—n[n-(xi—i)], i:l,...,n,

where X = mean(x,...,X,), and n is the left singular vector of matrix [xi,...,X,]
for the smallest singular value.

* Regular Polygon. This constraint requires a face with n > 3 vertices to be a
regular n-gon. It can be used to induce shape regularity of mesh elements (see
Figure 2). The proximal operator finds a regular n-gon closest to a polygon with
vertices Xy, ...,X, € R>. This can be done by computing the translation, rotation
and scaling of a predefined regular n-gon to fit the target polygon, using the
algorithm in [23].

2.2.2 Augmented Lagrangian Method

When dealing with hard constraints, extra care has to be taken to ensure that the
linear side constraints in problem (3) is satisfied. This is done using the augmented
Lagrangian method (ALM) [5], which searches for a saddle point of the following
augmented Lagrangian function
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L(p,y, A1) = F(p,y) + A h(p,y) + u|[h(p.y)|3, (4)

where F(p,y) is the target function in (3), and h(p,y) = Bp — yy is the residual
of side constraints in (3), A is a vector of dual variables, and g > 0 is a penalty
parameter. The solver 1terat1vely updates p,y,A and u until convergence. In each
iteration, new values P, ¥, p) , [l are computed from current values p,y, A , 1 using the
following steps

1. Primal update: (p,¥) = argminwﬁ(p,y,lﬁ);

2. Dual update: 1= A+T h(p,¥);
3. Penalty update: choose {I > L.

The problem in Step 1 has a similar structure as the one from Section 2.2.1, and is
solved in the same way. Specifically, it alternates between two steps

1. Projection step with proximal operator evaluations

. . 2 i
l')l;lll'lHij Asjp||2+65j(y$j)7 J 1a"'7NSa

Sj

A,
i — (A, Tk k=1,...,N
IYIE?HYW (A P+ 2u 3+ 03, (3. SRR Y

where 4, Collects the components of A in the same positions as Ya, inygy.
2. Solving a sparse SPD system for p

Ns
<DTD +wil"L+uB"B+ ) W;AngSl) p
j=1 '

A U
= DTr+WfLTLpO +IJBT (yH — Z'u) + Zl WjAgijj . (5)
j=

The primal update step is the most time-consuming part of the solver. We will not
go into the details of Steps 2 and 3, but refer the readers to [8] instead. Note that for
a given problem, the linear system matrix in problem (5) only changes according to
penalty parameter . The penalty update scheme in [8] only generates a predefined
set of values for i, so we can precompute all linear system matrices that appear in
problem (5).

3 General Implementation Strategies

We developed an interactive handle-based shape manipulation system for con-
strained meshes, based on the algorithms presented in the previous section. For an
initial mesh, the user selects a set of handle vertices, and specify their target posi-
tions (which we call handle positions) by dragging 3D manipulators. Whenever the
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Fig. 2: Handle-based deformation of a constrained mesh subject to the soft con-
straint that each faces is a regular polygon. Left: the initial mesh with the handles
(shown in red and blue) attached to the boundary vertices and four vertices in the
middle. The handles for the middle positions are moved to new target positions
(shown in red). Right: the mesh deforms according to the handle positions, while
satisfying the soft constraints.

manipulators are moved, the system deforms the mesh according to the new handle
positions, providing immediate feedback to the user (See Figure 2 for an example).

Figure 3 shows the architecture of our system. Here we distinguish between the
work of the threads from the user side (user interface, mouse and keyboard inter-
action, mesh display, etc.) which we gather as the user module, and the work done
within a single thread dedicated to a GPU-based ALM solver which we call the
optimization module. The latter loops over three main logical steps:

1. Input phase: transfer current handle positions to GPU;

2. Optimization phase: iterate the ALM steps on GPU, until some output conditions
are satisfied;

3. Output phase: read back updated vertex positions from GPU.

To run the ALM solver on GPU, we store on the GPU memory all the optimization
variables, as well as other auxiliary data (such as matrices A , B, D and vector r
J

in formulation (3), and the linear system matrices in problem' (5)). Many of these
data remain constant during optimization, and only need to be initialized once at
the beginning. Thus in the input phase, we only need to transfer the latest handle
positions to the GPU to update the problem specification.

As an iterative solver, the optimization phase requires initial values of the vari-
ables. To initialize the current optimization phase, we always use the resulting vari-
able values from the previous optimization phase. The motivation is that when a
user drags the handles continuously, the handle positions used in two consecutive
optimization phases are close to each other. Thus their solutions will be close to
each other as well, making the solution from the previous phase a good guess for
the current solution.
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Fig. 3: The architecture of our GPU-based implementation.

Depending on the data, the optimization phase might take a large number of
iterations to fully converge. To keep the process interactive, we allow switching from
optimization phase to output phase even if it is not fully convergent yet. When the
handles are dragged, they are likely to be moving at the same as the ALM solver is
running. Rather than solving the current problem to a very high accuracy, it is more
important to output the current result and start a new optimization phase with the
new handle positions, so that the mesh shape follows the handle positions smoothly
and shows how the shape reacts to handle position changes. Even if the output mesh
shape is not the exact solution, it is still a good approximation because the solver
usually converges quickly to an approximate solution [7]. Therefore, we switch from
optimization phase to output phase, if one of the following conditions is satisfied

1. The optimization phase fully converges;
2. The number of iterations within the optimization phase exceeds a limit M.

The output phase is responsible for reading back new vertex positions in order
to update the mesh data structure in host memory, which is then used to update the
mesh display. Both operations (vertex readback and mesh display update) involve
data transfer between CPU and GPU. To avoid unnecessary transfer while keep-
ing the process interactive, we only read back vertex positions if the elapsed time
(in milliseconds) from the last readback is larger than a threshold €. With such a
strategy, the maximum frame rate for mesh display is 1000/& FPS.



10 Alexandre Kaspar and Bailin Deng

i
2S5 5S
A A
T4 757

75
),4) s

Fig. 4: For a regular triangle mesh (i.e., each interior vertex has valence six, and
each boundary vertex has valence no larger than six), there exist three families of
edge polylines (shown in blue). Being a planar web requires each polyline to be
planar, namely all vertices on the polyline lie in a common plane.

After the output phase, depending on the availability of new handle positions and
the convergence of the optimization phase, we are in one of the following cases

* If there are new handle positions, transfer them to GPU and start a new optimiza-
tion phase;

* Otherwise, if the previous optimization phase was not fully convergent, resume
the optimization;

e Otherwise, wait for new handle positions.

4 CUDA Implementation Details

Our GPU implementation was done with CUDA. We targeted NVIDIA GeForce
GTX 580 [18], which runs under the Fermi architecture [17, 12]. It has 16 streaming
multiprocessors providing a total of 512 cores. Each of them has 64kB of memory
available between the L1 cache and the shared memory. The rest of this section will
present the challenges and specific implementation details.

4.1 Kernels

We implemented custom kernels for two critical operations: updating the handle
data and evaluating the proximal operators.
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4.1.1 Handle Update

When starting an optimization phase with new handle positions, we need to update
the GPU memory storage of vector r in formulation (3). With the number of handle
vertices being usually much smaller than the number of vertices, we first transfer
the handle positions onto the GPU memory as a contiguous vector Vy, € R3I|. Then
a custom kernel updates the entries of r according to Vy,, using a precomputed index
map (see Figure 5). Note that the index map remains unchanged during optimiza-
tion, since neither the choice of handle vertices nor the mesh topology is allowed to
change.

Another strategy would be to transfer only the handle positions that are being
changed by the user. This requires a dynamic index map for writing to vector r, as
well as checking which handles are being moved. To simplify implementation, we
did not use such strategy.

4.1.2 Proximal Operator Evaluation

As we saw in Section 2, proximal operators are responsible for updating auxiliary
variables. Each type of constraint corresponds to one proximal operator, which in-
volves a predefined set of operations. For different constraints of the same type, their
proximal operator evaluation is independent since the involved auxiliary variables
do not overlap. Such characteristics make it suitable to evaluate proximal operators
using custom CUDA kernels. Specifically, we implement one kernel for each type
of constraint, within which each thread handles one constraint.

For high performance, we need to ensure coalesced memory access. Thus we
store the auxiliary variables y in formulation (3) with a contiguous array in global
memory, where the components corresponding to the same kernel reside in a con-
tiguous region. The input data for proximal operators are of the same dimension as
y, and we store them with an array in global memory using the same layout as y (see
Figure 6 for example).

Another performance consideration is the grid and block sizes. We follow [22]
which suggests a number of threads per block:
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1. Dividing the maximum number of threads per SM, i.e. 1536 for Fermi;

2. At least 32 threads per block, i.e. the warp size;

3. At most 8 blocks per SM, so as to maximize occupancy (and thus at least
1536/8 = 192 threads per block).

Since we do not know the relation between different types of kernels, we chose
to simply saturate them by using a block size of 512 threads, which proved to be
sufficient for our need according to experiments.

Coplanarity Constraint

Because of specific features and limitations of GPU, additional care needs to be
taken when implementing some proximal operators. Here we use the vertex copla-
narity constraint as an example to show the challenges and our solutions. Copla-
narity constraint is one of the most important shape constraints in freeform archi-
tecture. It can be used to model planar panels [13] (Figure 1), as well as planar
webs which consist of curve elements of planar shapes [10] (Figure 4). For input
dataxi,...,X, € R?, a key step of the proximal operator is a singular value decom-
position (SVD), to extract the left singular vector of matrix M = [x1,...,X,] € R**"
for the smallest singular value (see Section 2.2.1).

Due to the memory layout requirement mentioned before, the global memory
storage of x1,...,X, is already a column-major representation for matrix M. Thus a
naive approach is to implement an SVD solver that operates directly on the global
memory storage of M. However, this might lead to excessive access to global mem-
ory, lowering the performance significantly [16].

To reduce global memory access, we implemented the kernel as follows. First
note that the target singular vector is the same as the right singular vector of 3 x 3
matrix MM” = ¥ x;x!" for the smallest singular value. Thus we create matrix
MM on local memory, by reading each x; from global memory and summing up
x,-xiT. Afterwards, we perform SVD on matrix MM . In this way, each global mem-
ory element of M needs to be accessed only once for computing the singular vector.
Moreover, this approach only performs SVD on a 3 x 3 matrix. For coplanarity con-
straints involving a large number of vertices, this significantly reduces the matrix
storage on local memory, compared to the original matrix M. Such compact storage
helps to reduce register spilling and L1 cache miss, which improves the performance
of the kernel. Furthermore, with this approach we are able to deal with coplanary
constraints with different number of vertices using a single kernel, by precomputing
an array that stores for each coplanarity constraint the following information: 1) the
number of vertices; and 2) the address of input data. Using a single kernel helps
to increase parallelism for the implementation, resulting in improved throughput
of the system. Figure 6 provides a schematic diagram for the kernel of coplanarity
constraints.

For 3 x 3 SVD, we implemented a simple SVD solver based on [20]. There exists
a branch-free 3 x 3 SVD solver [15] that might provide higher performance, but our
simple implementation turned out to be sufficient.
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Fig. 6: Schematic diagram for the proximal operator kernel of coplanarity con-
straints. Input data x and output data y are stored in two contiguous arrays respec-
tively. Within each array, data associated with a thread reside in a contiguous region.
Our implementation is able to handle coplanarity constraints for different number
of vertices within a single kernel. Here N-planarity refers to a coplanarity constraint
for N vertices.

4.2 Sparse Linear Algebra

In general, all matrices in formulation (3) are sparse, while the vectors are all dense.
Therefore, the solver requires many sparse matrix vector multiplications (SpMV).
For these operations we used the Cusp library [4] which provides an easy C++
interface for sparse linear algebra with CUDA. Among the sparse matrix formats
provided by Cusp, we chose the hybrid format (ELL + COO) as it provides faster
linear operations for general unstructured sparse matrices [3].
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Since we are targeting large meshes, we solve the sparse linear system (5) us-
ing a conjugate gradient (CG) solver provided by Cusp. To warm-start the solver,
we always use the previous CG solution as initial value for the current CG solv-
ing. Typically the right-hand side of system (5) changes gradually within the ALM
solver, thus two consecutive solutions of problem (5) do not deviate significantly
from each other, making this warm-starting strategy a reasonable choice. Alterna-
tively, direct solvers based on Cholesky factorization can be more efficient. On the
other hand, they often require more memory storage, because the sparsity of the lin-
ear system matrix is not preserved by its Cholesky factors. This could be an issue for
GPU, since typically the amount of GPU memory is smaller than the host memory.
Thus in our implementation we opted for a simple CG solver.

5 Results

In this section, we provide some performance results of our GPU-based constrained
mesh deformation method, and compare them against the CPU version. The CPU
version follows the same optimization workflow as described in Section 3, except
that all the data reside in the host memory so there is no need to transfer handle
positions in input phase and read back vertex positions in output phase. For both
CPU and GPU versions, the framerate was limited to 30 FPS (i.e., the minimum
elapsed time between two vertex readback operations is 33.3 ms), and the maximum
number of iterations in optimization phase was set to Mpyax = 50.

Both CPU and GPU versions were implemented for double-precision floating
point data. We used two CPU implementations with different solvers for system (5):
one uses CG, and the other uses a direct solver based on Cholesky factorization.
Both CPU implementations reduce system (5) into three smaller systems for the
x,y,z coordinates of the vertices respectively, with the same system matrix [6]. This
allows the three coordinates of each vertex to be solved in parallel. The CPU version
utilized OpenMP for the parallelization of proximal operator evaluation and linear
system solving, and used the Eigen library [14] for linear algebra operations. For the
CG solver on both CPU and GPU, we set the maximum number of iterations to 100,
and the tolerance for the 2-norm ratio between the residual and right-handle side to
1 x 107%. The CPU and GPU implementations were run on a PC with an NVIDIA
GeForce GTX 580 and an Intel Core i7 870 with four cores.

For comparison, each implementation was run with the same set of meshes and
constraints. Since the optimization phase spends most of the running time on prox-
imal operator evaluation and linear system solving, we focused the performance
comparison on these two steps. Thus we only used soft constraints in our experi-
ments, so that the optimization phase alternated between proximal operator evalu-
ation and linear system solving. Figures 7 and 8 show the meshes used in our ex-
periments, with the configuration of meshes and their constraints listed in Table 1.
Here the initial mesh in Roof?2 is a subdivided version of the initial mesh in Roof1,
while Lilium1 and Lilium2 have the same initial mesh shape under different con-
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(a) Roof1

(b) Roof2

(c¢) Lilium1

Fig. 7: The first sets of models with their configuration and output illustration.

straints. The coplanarity constraints (for planar faces and planar web) are applied to
a face or a polyline only if it has more than three vertices, while the constraints of
regular polygons are applied to all faces of a mesh. For each mesh, some boundary
vertices and interior vertices were chosen as handle vertices, with their handle posi-
tions shown in blue and red, respectively. In each experiment, the red handles were
moved to trigger mesh deformation.

Table 2 shows the average elapsed time between two entries to the output phase,
which we refer to as average frame time. A system with average frame time of o
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(b) Skyscraper

(c) Snale

(d) Yas

Fig. 8: The last sets of models with their configuration and output illustration.

milliseconds can achieve an average framerate up to 1000/o FPS if the framerate
is not limited. Thus smaller average frame time indicates more interactive result.
We can see that even for a mesh with 80K vertices and 79K constraints, our GPU
implementation achieves a framerate of 9 FPS, while the framerates for CPU imple-
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Table 1: Configurations for meshes shown in Figures 7 and 8.

Reference Label Vertices Faces Constraint Type Handles
Roofl 20464 19712 Planar Faces 1505
Roof2 80352 78848 Planar Faces 3012
Liliuml 3504 3505 Regular Polygon Faces 100
Lilium2 3504 3505  Planar Faces 100
Skyscraper 1517 2884  Planar Web 5
Snale 1092 1020  Planar Faces 143
Yas 1085 976  Planar Faces 221

mentations are much lower than 1 FPS. For a smaller model with about 1K vertices
and 1K constraints, our GPU implementation can potentially achieve a framerate of
over 300 FPS, well beyond the specified upper limit. The comparison on average
frame time shows that our GPU implementation gained significant speedups with
respect to the CPU implementations.

The accompanying video shows the user interaction for Roof2. We can see that
due to the large number of vertices and constraints, the CPU implementations failed
to respond quickly to handle position changes. On the other hand, the GPU imple-
mentation remains interactive, leading to more intuitive shape manipulation.

Finally, Table 3 gives the timing ratio between input phase (Input), proximal op-
erator evaluation (Projection), linear system solving (CG), and output phase (Out-
put) for a typical interaction session on GPU. We can see that linear system solving
spent the largest portion of time.

Table 2: Average frame time for different implementations.

Average Frame Time [ms]

Mesh CPUCG  CPUCholesky  GPUCG
Roof1 2159.43 791.03 2932
Roof2 14965.90 3842.25 107.20
Liliuml 638.45 132.84 17.82
Lilium? 210.34 43.99 1401
Skyscraper 119.77 279.12 3.92
Snale 115.29 63.78 23.89

Yas 94.64 52.45 3.04
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Table 3: Ratio of running time in each part of the optimization phase on GPU.

% of the time spent in GPU optimization phase

Mesh Input  Projections CG Output
Roofl 0.34 4.27 88.29 7.10
Roof2 0.00 3.32 86.81 9.87
Liliuml 0.00 0.21 98.01 1.78
Lilium2 0.04 0.16 97.22 2.59
Skyscraper 0.00 0.85 98.43 0.72
Snale 0.01 0.04 99.89 0.07
Yas 0.28 0.74 98.71 0.28

6 Limitation and Future Work

In our system, the linear system solving is the bottleneck of performance. This is due
to the well-known fact that SpMV involves irregular data access and thus achieves
lower performance compared to dense operations on GPU. This motivates us to ex-
plore more advanced GPU SpMV techniques such as [2] to further optimize the
performance. Another option is to adapt Cholesky-based direct solvers to GPU, as
direct solvers outperformed CG for CPU implementations in many of our experi-
ments.

A more ambitious improvement would be a hybrid GPU/CPU optimization. Cur-
rently the CPU is only used for managing the GPU, and it is mostly idle during the
optimization. Thus we plan to investigate workload distribution between CPU and
GPU to gain higher performance.

Our implementation requires frequent readback of vertex positions from GPU in
order to update the display, which incurs some performance loss. One of our future
plans is to directly update mesh display on GPU using vertex buffer object, thus
totally avoiding data transfer between CPU and GPU in the output phase.

Finally, our system runs on CUDA-enabled GPUs only. We intend to develop an
OpenCL-based system to make the algorithm available for a wider range of hard-
wares and platforms, and to compare the performance between different GPUs.

7 Conclusion

In this paper, we present an efficient handle-based constrained mesh manipulation
system implemented on GPU. The mesh manipulation is formulated as a constrained
optimization problem, which is decomposed into simple subproblems that can be
solved in parallel. Utilizing the computational power of GPU, we achieve signifi-
cant speedup of constrained mesh deformation compared to CPU implementation,
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as shown by our experiments on meshes with different sizes and constraints. On
the other hand, linear system solving becomes the performance bottleneck, which
provides an interesting avenue for future research.
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