201 research outputs found

    Reliable Web Service Consumption Through Mobile Cloud Computing

    Get PDF
    The mobile intermittent wireless connectivity limits the evolution of the mobile landscape. Achieving web service reliability results in low communication overhead and correct retrieval of the appropriate state response. In this chapter, we discuss and analyze two approaches based on middleware approach, Reliable Service Architecture using Middleware (RSAM), and Reliable Approach using Middleware and WebSocket (RAMWS). These approaches achieve the reliability of web services consumed by mobile devices and propose an enhanced architecture that achieves the reliability under various conditions with minimum communication data overhead. In these experiments, we covered several cases to prove the achievement of reliability. Results also show that the request size was found to be constant, the response size is identical to the traditional architecture, and the increase in the consumption time was less than 5% with the different response sizes

    A facile synthesis and some new reactions of N-benzylcarboxamides with essential amino acids

    Get PDF
    1059-106

    A trust evaluation scheme of service providers in mobile edge computing

    Get PDF
    Mobile edge computing (MEC) is a new computing paradigm that brings cloud services to the network edge. Despite its great need in terms of computational services in daily life, service users may have several concerns while selecting a suitable service provider to fulfil their computational requirements. Such concerns are: with whom they are dealing with, where will their private data migrate to, service provider processing performance quality. Therefore, this paper presents a trust evaluation scheme that evaluates the processing performance of a service provider in the MEC environment. Processing performance of service providers is evaluated in terms of average processing success rate and processing throughput, thus allocating a service provider in a relevant trust status. Service provider processing incompliance and user termination ratio are also computed during provider’s interactions with users. This is in an attempt to help future service users to be acknowledged of service provider’s past interactions prior dealing with it. Thus, eliminating the probability of existing compromised service providers and raising the security and success of future interactions between service providers and users. Simulations results show service providers processing performance degree, processing incompliance and user termination ratio. A service provider is allocated to a trust status according to the evaluated processing performance trust degree

    Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells

    Get PDF
    Control over morphology and crystallinity of metal halide perovskite films is of key importance to enable high-performance optoelectronics. However, this remains particularly challenging for solution-printed devices due to the complex crystallization kinetics of semiconductor materials within dynamic flow of inks. Here we report a simple yet effective meniscus-assisted solution printing (MASP) strategy to yield large-grained dense perovskite film with good crystallization and preferred orientation. Intriguingly, the outward convective flow triggered by fast solvent evaporation at the edge of the meniscus ink imparts the transport of perovskite solutes, thus facilitating the growth of micrometre-scale perovskite grains. The growth kinetics of perovskite crystals is scrutinized by in situ optical microscopy tracking to understand the crystallization mechanism. The perovskite films produced by MASP exhibit excellent optoelectronic properties with efficiencies approaching 20% in planar perovskite solar cells. This robust MASP strategy may in principle be easily extended to craft other solution-printed perovskite-based optoelectronics

    Preparation and Characterization of Stimuli-Responsive Magnetic Nanoparticles

    Get PDF
    In this work, the main attention was focused on the synthesis of stimuli-responsive magnetic nanoparticles (SR-MNPs) and the influence of glutathione concentration on its cleavage efficiency. Magnetic nanoparticles (MNPs) were first modified with activated pyridyldithio. Then, MNPs modified with activated pyridyldithio (MNPs-PDT) were conjugated with 2, 4-diamino-6-mercaptopyrimidine (DMP) to form SR-MNPs via stimuli-responsive disulfide linkage. Fourier transform infrared spectra (FTIR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were used to characterize MNPs-PDT. The disulfide linkage can be cleaved by reduced glutathione (GHS). The concentration of glutathione plays an important role in controlling the cleaved efficiency. The optimum concentration of GHS to release DMP is in the millimolar range. These results had provided an important insight into the design of new MNPs for biomedicine applications, such as drug delivery and bio-separation

    Advances in the field of nanooncology

    Get PDF
    Nanooncology, the application of nanobiotechnology to the management of cancer, is currently the most important chapter of nanomedicine. Nanobiotechnology has refined and extended the limits of molecular diagnosis of cancer, for example, through the use of gold nanoparticles and quantum dots. Nanobiotechnology has also improved the discovery of cancer biomarkers, one such example being the sensitive detection of multiple protein biomarkers by nanobiosensors. Magnetic nanoparticles can capture circulating tumor cells in the bloodstream followed by rapid photoacoustic detection. Nanoparticles enable targeted drug delivery in cancer that increases efficacy and decreases adverse effects through reducing the dosage of anticancer drugs administered. Nanoparticulate anticancer drugs can cross some of the biological barriers and achieve therapeutic concentrations in tumor and spare the surrounding normal tissues from toxic effects. Nanoparticle constructs facilitate the delivery of various forms of energy for noninvasive thermal destruction of surgically inaccessible malignant tumors. Nanoparticle-based optical imaging of tumors as well as contrast agents to enhance detection of tumors by magnetic resonance imaging can be combined with delivery of therapeutic agents for cancer. Monoclonal antibody nanoparticle complexes are under investigation for diagnosis as well as targeted delivery of cancer therapy. Nanoparticle-based chemotherapeutic agents are already on the market, and several are in clinical trials. Personalization of cancer therapies is based on a better understanding of the disease at the molecular level, which is facilitated by nanobiotechnology. Nanobiotechnology will facilitate the combination of diagnostics with therapeutics, which is an important feature of a personalized medicine approach to cancer

    The Short Non-Coding Transcriptome of the Protozoan Parasite Trypanosoma cruzi

    Get PDF
    The pathway for RNA interference is widespread in metazoans and participates in numerous cellular tasks, from gene silencing to chromatin remodeling and protection against retrotransposition. The unicellular eukaryote Trypanosoma cruzi is missing the canonical RNAi pathway and is unable to induce RNAi-related processes. To further understand alternative RNA pathways operating in this organism, we have performed deep sequencing and genome-wide analyses of a size-fractioned cDNA library (16–61 nt) from the epimastigote life stage. Deep sequencing generated 582,243 short sequences of which 91% could be aligned with the genome sequence. About 95–98% of the aligned data (depending on the haplotype) corresponded to small RNAs derived from tRNAs, rRNAs, snRNAs and snoRNAs. The largest class consisted of tRNA-derived small RNAs which primarily originated from the 3′ end of tRNAs, followed by small RNAs derived from rRNA. The remaining sequences revealed the presence of 92 novel transcribed loci, of which 79 did not show homology to known RNA classes

    Setting research priorities to improve global newborn health and prevent stillbirths by 2025.

    Get PDF
    BACKGROUND: In 2013, an estimated 2.8 million newborns died and 2.7 million were stillborn. A much greater number suffer from long term impairment associated with preterm birth, intrauterine growth restriction, congenital anomalies, and perinatal or infectious causes. With the approaching deadline for the achievement of the Millennium Development Goals (MDGs) in 2015, there was a need to set the new research priorities on newborns and stillbirth with a focus not only on survival but also on health, growth and development. We therefore carried out a systematic exercise to set newborn health research priorities for 2013-2025. METHODS: We used adapted Child Health and Nutrition Research Initiative (CHNRI) methods for this prioritization exercise. We identified and approached the 200 most productive researchers and 400 program experts, and 132 of them submitted research questions online. These were collated into a set of 205 research questions, sent for scoring to the 600 identified experts, and were assessed and scored by 91 experts. RESULTS: Nine out of top ten identified priorities were in the domain of research on improving delivery of known interventions, with simplified neonatal resuscitation program and clinical algorithms and improved skills of community health workers leading the list. The top 10 priorities in the domain of development were led by ideas on improved Kangaroo Mother Care at community level, how to improve the accuracy of diagnosis by community health workers, and perinatal audits. The 10 leading priorities for discovery research focused on stable surfactant with novel modes of administration for preterm babies, ability to diagnose fetal distress and novel tocolytic agents to delay or stop preterm labour. CONCLUSION: These findings will assist both donors and researchers in supporting and conducting research to close the knowledge gaps for reducing neonatal mortality, morbidity and long term impairment. WHO, SNL and other partners will work to generate interest among key national stakeholders, governments, NGOs, and research institutes in these priorities, while encouraging research funders to support them. We will track research funding, relevant requests for proposals and trial registers to monitor if the priorities identified by this exercise are being addressed

    Setting research priorities to improve global newborn health and prevent stillbirths by 2025

    Get PDF
    Background In 2013, an estimated 2.8 million newborns died and 2.7 million were stillborn. A much greater number suffer from long term impairment associated with preterm birth, intrauterine growth restriction, congenital anomalies, and perinatal or infectious causes. With the approaching deadline for the achievement of the Millennium Development Goals (MDGs) in 2015, there was a need to set the new research priorities on newborns and stillbirth with a focus not only on survival but also on health, growth and development. We therefore carried out a systematic exercise to set newborn health research priorities for 2013-2025. Methods We used adapted Child Health and Nutrition Research Initiative (CHNRI) methods for this prioritization exercise. We identified and approached the 200 most productive researchers and 400 program experts, and 132 of them submitted research questions online. These were collated into a set of 205 research questions, sent for scoring to the 600 identified experts, and were assessed and scored by 91 experts. Results Nine out of top ten identified priorities were in the domain of research on improving delivery of known interventions, with simplified neonatal resuscitation program and clinical algorithms and improved skills of community health workers leading the list. The top 10 priorities in the domain of development were led by ideas on improved Kangaroo Mother Care at community level, how to improve the accuracy of diagnosis by community health workers, and perinatal audits. The 10 leading priorities for discovery research focused on stable surfactant with novel modes of administration for preterm babies, ability to diagnose fetal distress and novel tocolytic agents to delay or stop preterm labour. Conclusion These findings will assist both donors and researchers in supporting and conducting research to close the knowledge gaps for reducing neonatal mortality, morbidity and long term impairment. WHO, SNL and other partners will work to generate interest among key national stakeholders, governments, NGOs, and research institutes in these priorities, while encouraging research funders to support them. We will track research funding, relevant requests for proposals and trial registers to monitor if the priorities identified by this exercise are being addressed
    corecore