
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 12, No. 2, April 2022, pp. 2121~2138

ISSN: 2088-8708, DOI: 10.11591/ijece.v12i2.pp2121-2138 2121

Journal homepage: http://ijece.iaescore.com

A trust evaluation scheme of service providers in mobile edge

computing

Merrihan Badr Monir Mansour1,2, Tamer Abdelkader1, Mohammed Hashem AbdelAziz1,

El-Sayed Mohamed EI-Horbaty1
1Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt

2Faculty of Business Administration Economics and Political Science, The British University in Egypt, Cairo, Egypt

Article Info ABSTRACT

Article history:

Received Dec 25, 2020

Revised Sep 19, 2021

Accepted Oct 10, 2021

 Mobile edge computing (MEC) is a new computing paradigm that brings

cloud services to the network edge. Despite its great need in terms of

computational services in daily life, service users may have several concerns

while selecting a suitable service provider to fulfil their computational

requirements. Such concerns are: with whom they are dealing with, where

will their private data migrate to, service provider processing performance

quality. Therefore, this paper presents a trust evaluation scheme that

evaluates the processing performance of a service provider in the MEC

environment. Processing performance of service providers is evaluated in

terms of average processing success rate and processing throughput, thus

allocating a service provider in a relevant trust status. Service provider

processing incompliance and user termination ratio are also computed during

provider’s interactions with users. This is in an attempt to help future service

users to be acknowledged of service provider’s past interactions prior

dealing with it. Thus, eliminating the probability of existing compromised

service providers and raising the security and success of future interactions

between service providers and users. Simulations results show service

providers processing performance degree, processing incompliance and user

termination ratio. A service provider is allocated to a trust status according

to the evaluated processing performance trust degree.

Keywords:

Edge computing

Processing performance

Processing throughput

Service level agreement

Service providers

Trust evaluation

This is an open access article under the CC BY-SA license.

Corresponding Author:

Merrihan Badr Monir Mansour

Faculty of Computer and Information Sciences, Ain Shams University

El-Khalifa El-Maamoun, Al Obour, Al Qalyubia Governorate, Egypt

Email: merrihan.mansour@bue.edu.eg

1. INTRODUCTION

Mobile edge computing (MEC) is a new emerging technology that extends the cloud computing

capabilities to the network edge [1], by integrating MEC servers with the mobile network edge [2], through

radio access network (RAN) [3], [4]. This permits direct mobile communication between the base network

and end users [5], which allows low latency, better quality of service (QoS) [6], high bandwidth access to

mobile applications and network information [7]. With the great evolution of mobile devices’ capabilities,

their owners hold valuable information, apart from the devices’ configuration, such as real time knowledge

and on-time location awareness of an event. Such mobile capabilities and information are considered great

resources in terms of data analysis, processing, and storage media [8]. With the MEC network expansion [9],

there is a great increase in service providers offering services. In this context, there could be different service

providers offering similar service types, e.g., processing computation and/or storage, were each of them

could have different processing performance quality. On the other hand, one service provider could offer

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 2, April 2022: 2121-2138

2122

more than one service type [10]. However, not all services offered by the same service provider could have

the same processing performance efficiency. Meanwhile, service users could require different functionalities

and have different processing preferences, in terms of cost, storage capacity, processing performance quality

and trust degree [11], [12].

Given that, service providers are located in remote locations, most of them are unknown to service

users. For this reason, service users hold several doubts such as, dealing with unknown service providers,

user’s data privacy, service providers’ history and processing performance quality. This is mainly due to the

lack of previous experience between service providers and users. This creates a level of uncertainty about the

fulfilment of service users’ various computational needs and expectations, which limits users’ dependency on

the MEC resources [13]. Many researchers had presented various attempts to build trusted relationships in

edge computing paradigms [14]. This is to provide an efficient trust evaluation scheme for the available

services provided by service providers, to secure future users’ interactions [15], [16]. In mobile edge

computing, a secure multi-tier model was proposed in [17]. In this protocol, it was assumed that the higher

degree of trust, the less security measures could be taken by a node and vice versa. But unfortunately, it did

not consider sudden attacks occurring for a trusted node, such as hacking. A trust evaluation scheme was

presented in [18], were it computes service providers’ identity, hardware capabilities and behavioral trust in

the MEC network. The main limitation of this scheme is that it mainly depends on users’ feedback opinion to

compute trust.

An integrated trust evaluation model was depicted in [19], to evaluate service providers’ identity,

historical behavior and quality of service offered. Trust computation was time consuming in this model, due

to the complexity of the equations. In [20], a trust assessment protocol was developed that monitors and

analyze traffic flow of interactions between service users and providers to evaluate trust. However, no

performance parameters were evaluated. Another attempt to evaluate service providers’ performance during

their interactions is the issuance of a service level agreement (SLA) [21]. An SLA is an agreed upon

document between a service provider and user, that specifies the required task description and application

requirements [22]. Yet, this is not sufficient to secure service users, since not all service providers abide to

the SLA statements thoroughly. However, there is a lack of a standard SLA format. As shown, each of the

previously mentioned protocols measured cloud services using different parameters. There is not a unified

scheme that could evaluate service providers processing performance. Meanwhile, node history was not

captured, which gives a chance for an entity to behave maliciously, knowing that it would not be recognized

in the future. This increases service users’ fears and prevents them from relying on the cloud and edge

computing paradigms to fulfil their computational needs.

This paper presents a unified trustworthy evaluation model that evaluates service providers’

processing performance, to distinguish trustworthy providers. The main contributions of this paper are:

i) service providers’ processing performance evaluation in terms of processing success ratio and throughput,

ii) processing incompliance and user termination ratio computation of service providers, iii) development of a

penalty system to track malicious actions committed by service providers, and iv) assignment of service

providers to relative trust status. This would help service users in their service providers’ selection and

optimizes the security of future interactions, which enhances the MEC network expansion [23].

The rest of this paper is organized as follows; section 2, introduces the proposed architecture

method, functional algorithms, and their description. Section 3 shows the results and discussion. Finally, the

conclusion and future work are presented in section 4.

2. PROPOSED ARCHITECTURE METHOD

The proposed architecture evaluates the processing performance of service providers in the MEC

network. In this model, a service provider is evaluated according to its processing performance quality and

not by the quantity of hardware or software resources that it possesses, e.g., storage space, number of

processors and RAM. The main protocol entities, proposed functions, equations, and algorithms are

described in subsection 2.1 to 2.6.

2.1. Main protocol entities and their equivalent tasks

The main acting entities in the proposed scheme are service provider SP, service user SU, cloud

broker (CB), network provider (NP) and cloud service manager (CSM) [24]. The relationship between the

protocol entities is shown in Figure 1 and detailed below.

− Service provider SPi: [25] a service provider “i”, i Є I, where I is the set of service providers. A service

provider may be a small entity offering one service of one type, or a big organization that owns several

hardware and software resources and offers several services of different job types. In case a service

Int J Elec & Comp Eng ISSN: 2088-8708

 A trust evaluation scheme of service providers in mobile edge computing (Merrihan Badr Monir Mansour)

2123

provider SPi provides more than one service type, it is referred to as Sri. For simplicity, we will be referring

to each service provider as Sri, throughout this paper.

− Service user SUj: a service user “j”, j Є J, where J is the set of service users. A service user could be an

entity or organization that requests a specific service to be performed over the network and pays for it [26].

− Cloud broker CBu: a cloud broker “u”, u Є U, where U is the set of cloud brokers. CB is an entity that

mainly helps service users to find appropriate service providers to fulfil their computational needs, and it is

being paid for this job. CB works as a local entity per area, where it should be aware of all available service

providers and their offered service type. CB could communicate with other entities outside its area to reach

suitable service providers [22]. CB is considered as a semi trusted entity that is not allowed to reveal

service provider or service user private information, such as own opinion, as it could have a personal

benefit. It also acts as a transmission and storage medium between service provider, user and CSM for

certain encrypted information as shown below.

− Cloud service manager (CSM): is considered a fully trusted authorized entity that is responsible for

registering cloud brokers, service providers and service users to the MEC network through a network

provider. CSM evaluates the processing performance and trust status of service providers [27]. It also

checks the status and validity of cloud brokers periodically to ensure secure communication medium

between service providers and users. Therefore, CSM should maintain high computational capabilities and

covers a wide geographical region.

− Network provider NPw: a network provider “w”, w Є W, where W is the set of network providers. NP is

responsible for communication, data transmission and network efficiency, between all the above entities.

Note that, there could be more than one network provider located per geographic area [12].

Figure 1. Main protocol entities relationship

However, a cloud broker, service provider or service user could deal with more than one network

provider [28]. While a service provider could accept jobs from more than one cloud broker, a service user can

also deal with more than one cloud broker to request different computational tasks. All of the above entities

are authenticated in the MEC network by their unique identity, which is out of the scope of this paper.

2.2. List of assumptions

The proposed scheme considers the following assumptions:

a) There are three job types requested over the MEC network; type 1: storage request (storing massive

terabytes, e.g., videos), type 2: computational processing request (jobs that require high processing

speed/capabilities), type 3: requesting both of them. These jobs are the most commonly requested

processes in the cloud computing paradigm and MEC network;

b) If the same service provider 𝑆𝑃𝑖 offers more than one job type, known as 𝑆𝑟𝑖 , were r Є {type 1, type 2,

type 3}. This does not mean that SP has the same computational efficiency for all job types. For instance,

it could be powerful in one job type, e.g., storage, and weak in another, e.g., processing efficiency or vice

versa;

c) The same service provider 𝑆𝑃𝑖 gives equal usage and benefits of its hardware and software resources to

all its services and users;

d) Job processing, storage and execution isolation is considered as a default action by a service provider

[29];

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 2, April 2022: 2121-2138

2124

e) Since each service user could have different priorities and intentions, the proposed scheme asks the

service user for a priority list of preferences and responds with a recommendation list accordingly;

f) Batch processing is assumed for trust computation. All processes of the same job type per service

provider 𝑆𝑟𝑖 are gathered per computational interval (e.g., month);

g) Trust evaluation is performed per process accepted by 𝑆𝑟𝑖; 8) A network provider of each of 𝑆𝑟𝑖, 𝑆𝑈𝑗 and

𝐶𝐵𝑢, have a limited contribution in the proposed scheme as discussed below.

2.3. Processing performance computational equations

The proposed trust scheme measures the processing performance P(𝑆𝑟𝑖) of service provider 𝑆𝑃𝑖

which could own more than one service 𝑆𝑟𝑖. However, jobs of the same type, are evaluated per service

provider 𝑆𝑟𝑖, as mentioned previously. Noting that, P consists of different weighted parameters and computed

by the CSM, as described below.

Let each requested job of any type be known as process “a”, a Є A, where A is the total number of

processes executed at 𝑆𝑟𝑖, but distinguished by their job type. Each process “a” has a separate service level

agreement, even if it is performed by the same 𝑆𝑃𝑖/𝑆𝑟𝑖. Assume the components of an SLA of process “a”

executed by 𝑆𝑟𝑖 be processing cost (𝑆𝐶𝑖𝑎), storage capacity GB/TB (𝑆𝑆𝑖𝑎), duration of maintenance hr/min

(𝑆𝑀𝑖𝑎), and agreed estimated execution time hr/min (𝑆𝐸𝑖𝑎) [30]. All SLA’s components are rated by 𝑆𝑈𝑗

after the job is ended or terminated [31]. The proposed scheme constitutes of eight equations, as detailed below.

Let 𝑇𝑣 be actual processing execution time of process “a” at 𝑆𝑟𝑖, where “a” start time is 𝑃𝑎𝑠𝑡 and end

time is 𝑃𝑎𝑒𝑡. Hence,

𝑇𝑣= 𝑃𝑎𝑒𝑡 − 𝑃𝑎𝑠𝑡 (1)

Assume the time difference between the estimated agreed time 𝑆𝐸𝑖𝑎 and actual processing execution time 𝑇𝑣,

be 𝑇𝑅𝑖𝑎 (Time compliance), therefore,

𝑇𝑅𝑖𝑎= 𝑆𝐸𝑖𝑎 − 𝑇𝑣 (2)

𝑇𝑅𝑖𝑎 = [
≥ 0 "𝑎" completed within SEia

< 0 SEia time incompliance
]

Given that each process “a” should end in one of the following four states {PE1, PE2, PT1, PT2}:

[
PE1 Process ended by Sri complete
PE2 Process ended by Sri incomplete]

[

PT1 Process terminated by SUj Tv > SEia

PT2 Process terminated by SUj Tv < SEia]

Let 𝑃𝐸1_𝑇,𝑃𝐸2_𝑇, 𝑃𝑇1_𝑇 and 𝑃𝑇2_𝑇 be the total number of 𝑃𝐸1, 𝑃𝐸2, 𝑃𝑇1 and 𝑃𝑇2 respectively. Let

the rated SLA, be 𝑆𝐿𝐴𝑖𝑎_𝑅, and the total number of 𝑆𝐿𝐴𝑖𝑎_𝑅 implies the total number of ended

jobs/processes, “A”. Therefore, the average processing success rate 𝑃𝐴𝑉 (𝑆𝑟𝑖) can be measured by,

𝑃𝐴𝑉 (𝑆𝑟𝑖) =
 𝑃𝐸1_𝑇

𝐴
 (3)

On the other hand, processing incompliance 𝑃𝐼(𝑆𝑟𝑖) or failure ratio, can be calculated as,

𝑃𝐼(𝑆𝑟𝑖) =
𝑃𝐸2_𝑇+𝑃𝑇1_𝑇

𝐴
 (4)

The user termination ratio 𝑈𝑇𝑅(𝑆𝑟𝑖) can be measured by,

𝑈𝑇𝑅(𝑆𝑟𝑖) =
 𝑃𝑇2_𝑇

 𝐴
 (5)

In case 𝑈𝑇𝑅(𝑆𝑟𝑖) exceeds a certain threshold, a warning is issued to alarm the relevant service

provider of its high user termination ratio. The processing throughput PT(𝑺𝒓𝒊) will be measured by

Int J Elec & Comp Eng ISSN: 2088-8708

 A trust evaluation scheme of service providers in mobile edge computing (Merrihan Badr Monir Mansour)

2125

considering the number of completed successful processes 𝑃𝐸1, per computational interval and given certain

points for each range of values by,

PT(𝑆𝑟𝑖)= Points(𝑆𝑟𝑖) (6)

for 1 ≤ PE1_T // Function F3.

After all, the processing performance of a service provider P(𝑺𝒓𝒊) will be computed as,

P(𝑆𝑟𝑖) =
𝑃𝐴𝑉 (𝑆𝑟𝑖)+ PT(𝑆𝑟𝑖)

2
 (7)

Noting that the total number of processes executed, “A”, at service provider 𝑆𝑟𝑖 of 𝑆𝑃𝑖 , per computational

interval, equals;

A = 𝑃𝐸1_𝑇+𝑃𝐸2_T+𝑃𝑇1_𝑇+𝑃𝑇2_𝑇 (8)

as process “a”, should end in one of these four states. The processing capacity 𝑃𝐶𝑖 of a service provider 𝑆𝑟𝑖,

is a predetermined value by the service provider specified during the registration process. Each of the above

equations is applied in the below functional algorithms, as part of the trust computation process.

2.4. Functional algorithms and description

The proposed protocol is composed of eleven functional algorithms, which leads to measuring the

processing performance of a service provider 𝑆𝑟𝑖 and assigning it to a trust status. It also measures the

processing incompliance and user termination ratio per service provider. A penalty system is also presented

to identify any malicious action performed by the participating entities. Table 1 shows each function name

and aim, the consequent action performed with the relevant algorithm figure number. Figure 2 presents the

protocol architecture and the relationship between the eleven functions. Dashed lines indicate that this

function may or may not be called.

Table 1. Proposed scheme functions
Function

name

Aim Action performed Algorithm

no.

F0 Service provider registration
function.

Service provider registered to MEC network if it is not
previously registered in network.

1

F1 Job request and execution

protocol.

Job processed by service provider. 2

F2 Cloud broker computation of total

𝑆𝐿𝐴𝑖𝑎_𝑅, “A” for each service

provider 𝑆𝑟𝑖.

“A” computed per service provider 𝑆𝑟𝑖. 3

F3 Processing throughout

computation for each 𝑆𝑟𝑖.
PT(𝑆𝑟𝑖) computed. 10

F4

Processing performance

evaluation for 𝑆𝑟𝑖.

P(Sri), PI(Sri), 𝑆𝑟𝑖_𝑎𝑔𝑒, UTR(Sri) & 𝑃𝐴𝑉 (𝑆𝑟𝑖) computed. 9

F5 Trust status computation function

for 𝑆𝑟𝑖.

Tn(Sri) computed. 11

F6 Cloud broker checks 𝑆𝐿𝐴𝑖𝑎_𝑅

validity.

Penalty E1_SUj is set to true or false accordingly. 4

F7 Complain function against service

provider 𝑆𝑟𝑖.
Cloud broker stops sending new job_request to 𝑺𝒓𝒊 until 𝑇𝑅𝑖𝑎

correction is sent by it.

5

Penalty Functions

E1 𝑆𝑈𝑗 did not send 𝑆𝐿𝐴𝑖𝑎_𝑅. All job requests by 𝑆𝑈𝑗 are rejected until it sends 𝑆𝐿𝐴𝑖𝑎_𝑅. 6

E2 𝑆𝑟𝑖 attempt to register again as a

new provider in the network.

P(Sri) is decreased in the first attempt. While 𝑆𝑟𝑖 is temporarily

blocked from accessing the network for X-days in the later

attempts by penalty “E5”.

7

E3 Lazy or compromised cloud

broker.

Generates W1 or W2 in the first and second attempts. While

CBu is temporarily blocked from accessing the network for X-

days by penalty “E4”.

8

2.5. Proposed penalty protocol

The penalty protocol is presented as part of the proposed architecture. It mainly aims to track service

providers malicious actions, which helps in their processing performance and trust status computation

process. However, the penalty protocol achieves the following: i) it shows the type of wrong action

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 2, April 2022: 2121-2138

2126

performed by the involved entity; ii) it encounters several malicious action types expected to happen, such as

an existing service provider attempt to register as a new one, in order to hide its bad history; iii) it counts the

number and type of malicious actions performed per computational interval; and iv) imposes a penalty

according to each malicious action type performed by the accused entity.

The penalty scheme also monitors cloud brokers and service users’ actions in a limited manner,

since this is out of the scope of this paper. This provides more secure transactions between service providers,

users, and cloud brokers in the MEC environment. Table 2 states each penalty name, its description, and

consequences. All of the above functions are described in the following subsections with their relevant

algorithms.

Figure 2. Functions relationship diagram

Table 2. Penalties and their consequences

2.6. Functional algorithms

In this section, each of the above mentioned functions in Table 1, are described below with their

relative algorithms. The penalty functional algorithms are also detailed below, together with their generated

warnings, and actions performed accordingly.

2.6.1. Service provider registration

A service provider 𝑆𝑃𝑖 could own more than one service, thus service registration to the MEC

network is performed per service 𝑆𝑟𝑖 {job type 1, 2, or 3} of service provider 𝑆𝑃𝑖 , with the aid of a network

Penalty name Description Consequences

E1_𝑆𝑈𝑖
𝑆𝑈𝑖 did not send to 𝐶𝐵𝑢 rated(𝑆𝐿𝐴𝑖𝑎_𝑅) after process

ended/terminated.

Job request rejected until sending the pending

𝑆𝐿𝐴𝑖𝑎_𝑅.

E2_𝑆𝑟𝑖 𝑆𝑟𝑖 first attempt to register again in the MEC network. Request rejected, 𝑃(𝑆𝑟𝑖) decreased.

E3_CBu
Cloud broker CBu exceeded end of month batch computation for

𝑆𝑟𝑖 for one or two attempts.

Cloud broker receives warning W1 or W2 from
CSM accordingly.

E4_CBu
Third attempt of cloud broker to delay its computational job,

after being warned by “E3”. Compromised CBu.

Cloud broker is temporarily blocked from the

network by CSM.

E5_𝑆𝑟𝑖
𝑆𝑟𝑖 second attempt to register again in the MEC network, after

being warned by “E2”. Compromised 𝑆𝑟𝑖.

Service provider is temporarily blocked from

the network by CSM, for X-days.

Int J Elec & Comp Eng ISSN: 2088-8708

 A trust evaluation scheme of service providers in mobile edge computing (Merrihan Badr Monir Mansour)

2127

provider. Algorithm1, shows the service provider registration algorithm 1, function F0, and its flowchart in

Figure 3.

Figure 3. Service provider registration flowchart

Algorithm 1: Service provider registration-function F0
Algorithm code: F0

Description: Service provider registration function.

Executed at CSM.

1.

2.
Input: new 𝑆𝑟𝑖 of 𝑆𝑃𝑖 needs to register to MEC network.

Output: registered 𝑆𝑟𝑖 of 𝑆𝑃𝑖.

3.

4.

5.

6.

7.

8.

9.

10.

11.

𝑆𝑃𝑖→𝑁𝑃𝑤: join_request of 𝑆𝑟𝑖 of 𝑆𝑃𝑖

𝑁𝑃𝑤→CSM: join_request of 𝑆𝑟𝑖 of 𝑆𝑃𝑖 ,

where join_request includes job_type = (storage, processing, or both & 𝑃𝐶𝑖_value)

CSM: checks

 if 𝑆𝑟𝑖 exists then

 execute Penalty Function E2

 exit ()

 else

12.

13.

14.

15.

16.

17.

18.

19.

 CSM:

 issues identity_Sri // 𝑆𝑟𝑖 unique credentials

 computes

 P(Sri)=0, To(Sri)= “Beginner”, // To(Sri)= initial trust status of Sri

 assigns 𝑃𝐶𝑖(𝑆𝑟𝑖)=value

 𝑆𝑟𝑖_𝑏𝑖𝑟𝑡ℎ = Current_date, // birth date= registration day
 𝑆𝑟𝑖_𝑎𝑔𝑒= 0 // initial state // age of Sri

20.

21.

22.

23.

24.

25.

26.

 CSM→𝑁𝑃𝑤:

 𝑁𝑃𝑤→𝑆𝑟𝑖: (𝐸𝑛(identity_Sri, P(Sri) = 0, To(Sri)=

 “Beginner”, 𝑆𝑟𝑖_𝑏𝑖𝑟𝑡ℎ , 𝑆𝑟𝑖_𝑎𝑔𝑒, 𝑃𝐶𝑖(𝑆𝑟𝑖)) SPi𝑃𝑢
)

 //encrypted by the public key of 𝑆𝑃𝑖

 𝑁𝑃𝑤→𝐶𝐵𝑢: new 𝑆𝑟𝑖+ job_type+𝑃𝐶𝑖(𝑆𝑟𝑖)
 // 𝑁𝑃𝑤informs 𝐶𝐵𝑢 of new 𝑆𝑟𝑖

 endif

27. end

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 2, April 2022: 2121-2138

2128

By the completion of function F0, a new service 𝑆𝑟𝑖 of service provider 𝑆𝑃𝑖 , is now registered to the

MEC network, with a unique identity number to be authenticated and distinguished among other service

providers. Service provider’s unique identity is issued and saved by the CSM. On the other hand, a network

provider should have a list of all available registered service providers and must exchange it with other

network providers, if any exists, within the same region. A network provider also must continuously update

cloud brokers with the newly registered or deactivated service providers. Cloud brokers by return, will be

aware and updated with service providers’ status in their own area, which enhances service provider selection

process by users. This minimizes the communication overhead between the participating entities in the MEC

network.

2.6.2. Job request scenario algorithm

Algorithm 2, shows the job request scenario algorithm steps. A service user is expected to request

one of the previously mentioned job types from a cloud broker, which in return searches for an appropriate

service provider. If 𝑆𝑈𝑗 did not send rated SLA for its previously ended job in the MEC network, this user is

penalized by being prohibited from requesting further jobs through function E1, described in section 2.6.4,

until it sends the required rated SLA. Otherwise, 𝐶𝐵𝑢 asks 𝑆𝑈𝑗 to choose from a priority list its preferences,

as shown in algorithm 2. Upon 𝑆𝑈𝑗 feedback, 𝐶𝐵𝑢 sends a recommendation list of available service

providers, with respect to the chosen priorities [32]. 𝑆𝑈𝑗 chooses a service provider and informs the 𝐶𝐵𝑢 of

its choice.

Consequently, 𝐶𝐵𝑢 checks the chosen service provider processing capacity 𝑃𝐶𝑖(𝑆𝑟𝑖) limit. If

𝑃𝐶𝑖(𝑆𝑟𝑖) is not maximum, the cloud broker starts direct communication between the service provider and

user. Given that, each job will have a separate SLA, chosen 𝑆𝑟𝑖 sends an initial SLA, 𝑆𝐿𝐴𝑖𝑎_𝐼, to 𝑆𝑈𝑗 for

approval. Upon SLA approval by both parties, requested job processing starts, were 𝑆𝑟𝑖 informs 𝑆𝑈𝑗 of the

job start time; 𝑃𝑎𝑠𝑡 . Job processing is ended or terminated in one of the previously mentioned four states,

(𝑃𝐸1, 𝑃𝐸2, 𝑃𝑇1, 𝑃𝑇2) by either the 𝑆𝑟𝑖 or 𝑆𝑈𝑗. Consequent steps take place accordingly as stated in Figure 2. In

all cases, 𝑆𝑈𝑗 should send rated 𝑆𝐿𝐴𝑖𝑎_𝑅.

While TRia (time compliance, equation 2), is computed by 𝑆𝑟𝑖, it should be approved by 𝑆𝑈𝑗 within

a time threshold, to avoid holding an opened transaction for a long time intentionally by any entity. In case,

𝑆𝑈𝑗 requests TRia correction, 𝑆𝑟𝑖 should reply with the corrected TRiawithin a time threshold, otherwise

complain function F7 (detailed in section 2.6.3) is called. Upon TRia, agreement, function F6 (algorithm 4) is

called to check the validity of rated 𝑆𝐿𝐴𝑖𝑎_𝑅 (depicted in section 2.6.3). The rated 𝑆𝐿𝐴𝑖𝑎_𝑅 is encrypted by

the public key of the CSM, which will handle trust computation process. This is performed using asymmetric

encryption techniques, such as public key infrastructure (PKI) [33]. Using PKI, ensures secure trust

computation, information integrity and confidentiality, while securing future user interactions [34].

Algorithm 2: Job request processing scenario-function F1.
Algorithm code: F1()

Description: Job Request and Execution Protocol

1. Input: job_request by 𝑆𝑈𝑗.

2. Output: job_request of 𝑆𝑈𝑗 executed.

3. 𝑆𝑈𝑗→𝐶𝐵𝑢 ∶ job_request = job_type: (storage | processing | both)
4.

5.

6.

7.

8.

𝐶𝐵𝑢: checks

 if E1_𝑆𝑈𝑗 = true then

 execute Penalty function E1 // lazy 𝑆𝑈𝑗

 exit ()

 endif

9. 𝐶𝐵𝑢→𝑆𝑈𝑗: priority_list of job_type

10. where priority_list = (𝑃(𝑆𝑟𝑖) | storage capacity)
11. 𝑆𝑈𝑗→𝐶𝐵𝑢: returned priority_list answer

12. 𝐶𝐵𝑢→𝑆𝑈𝑗: recommendation_list of 𝑆𝑟𝑖 with respect to priority_list answer

13. 𝑆𝑈𝑗→𝐶𝐵𝑢: chosen 𝑆𝑟𝑖

14.

15.

16.

17.

18.

𝐶𝐵𝑢: checks

 if PC(𝑆𝑟𝑖) = maximum then
 chosen 𝑆𝑟𝑖 rejected

 return to step 12, excluding chosen 𝑆𝑟𝑖

 else

19.

20.

 𝐶𝐵𝑢→𝑆𝑟𝑖: job_request of 𝑆𝑈𝑗

 endif

21.

22.

23.

𝑆𝑟𝑖 :
 if 𝑆𝑟𝑖 refuses job_request then

 𝑆𝑟𝑖→𝐶𝐵𝑢: job_request rejected

Int J Elec & Comp Eng ISSN: 2088-8708

 A trust evaluation scheme of service providers in mobile edge computing (Merrihan Badr Monir Mansour)

2129

24.

25.

 return to step 12, excluding chosen 𝑆𝑟𝑖

 else

26.

27.

 𝑆𝑟𝑖→𝑆𝑈𝑗: 𝑆𝐿𝐴𝑖𝑎_I for approval

 where 𝑆𝐿𝐴𝑖𝑎_I = (𝑆𝐸𝑖𝑎,𝑆𝐶𝑖𝑎,𝑆𝑀𝑖𝑎, 𝑆𝑆𝑖𝑎) // initial SLA

28.

29.

30.

31.

32.

33.

34.

35.

 𝑆𝑈𝑗→𝐶𝐵𝑢: 𝑆𝐿𝐴𝑖𝑎_I
 endif

𝐶𝐵𝑢:

 if 𝑆𝐿𝐴𝑖𝑎_I = approved then
 𝐶𝐵𝑢→𝑆𝑟𝑖: approved 𝑆𝐿𝐴𝑖𝑎_I
 else

 return to step 12, excluding chosen 𝑆𝑟𝑖

 endif

36.

37.

38.

39.

𝑆𝑟𝑖: assigns

 job_type of 𝑆𝐿𝐴𝑖𝑎_I to “a”
 issues 𝑃𝑎𝑠𝑡

 where 𝑃𝑎𝑠𝑡=(start_date_time of process “a”)

40. 𝑆𝑟𝑖→𝑆𝑈𝑗: 𝑃𝑎𝑠𝑡 // informs 𝑆𝑈𝑗 of start of processing

Case 1: Service provider ends job_request

41. 𝑆𝑟𝑖→𝑆𝑈𝑗: 𝑃𝐸

42.

43.

 where 𝑃𝐸 = 𝑃𝐸1| 𝑃𝐸2= (𝑃𝑎𝑒𝑡, 𝑇𝑅𝑖𝑎, 𝑇𝑣, 𝑃𝑎𝑒𝑡, 𝑃𝑎𝑠𝑡)

 & 𝑃𝑎𝑒𝑡= (end_date & time of process 𝑎𝑜)

44. 𝑆𝑈𝑗: checks // within time_threshold

45. if 𝑇𝑣 = approved then

46.

47.

48.

 𝑆𝑈𝑗→𝐶𝐵𝑢: (𝐸𝑛 (𝑆𝐿𝐴𝑖𝑎_𝑅) 𝐶𝑆𝑀𝑃𝑢),

 where (𝑆𝐿𝐴𝑖𝑎_𝑅) = 𝑟𝑎𝑡𝑒𝑑(𝑆𝐸𝑖𝑎,𝑆𝐶𝑖𝑎,𝑆𝑀𝑖𝑎, 𝑆𝑆𝑖𝑎)+ 𝑇𝑅𝑖𝑎_true+𝑃𝐸1|𝑃𝐸2

 execute Function F6

49.

50.

51.

52.

53.

54.

55.

56.

57.

 else // 𝑇𝑅𝑖𝑎_false

 𝑆𝑈𝑗→𝑆𝑟𝑖: requests 𝑇𝑅𝑖𝑎 correction,

 wait for corrected 𝑃𝐸,

 if received within time_threshold then

 return to step 44

 else

 execute Function F7 // complain function against 𝑆𝑟𝑖

 endif

 endif

Case 2: Service user terminates job_request

58.

59.

𝑆𝑈𝑗→𝑆𝑟𝑖: 𝑃𝑇

 where 𝑃𝑇 = 𝑃𝑇1 | 𝑃𝑇2= (process termination request)

60.

61.

62.

63.

64.

65.

66.

67.

 𝑆𝑟𝑖:

 computes 𝑇𝑣 & 𝑇𝑅𝑖𝑎

 𝑆𝑟𝑖→𝑆𝑈𝑗: 𝑇𝑣 & 𝑇𝑅𝑖𝑎

 𝑆𝑈𝑗: checks

 if 𝑇𝑣 = approved then

 𝑆𝑈𝑗→𝐶𝐵𝑢: (𝐸𝑛 (𝑆𝐿𝐴𝑖𝑎_𝑅) 𝐶𝑆𝑀𝑃𝑢),

 where (𝑆𝐿𝐴𝑖𝑎_𝑅) = 𝑟𝑎𝑡𝑒𝑑(𝑆𝐸𝑖𝑎,𝑆𝐶𝑖𝑎,𝑆𝑀𝑖𝑎, 𝑆𝑆𝑖𝑎)+ 𝑇𝑅𝑖𝑎_true +𝑃𝑇1|𝑃𝑇2

 execute Function F6

68.

69.

70.

71.

72.

73.

74.

75.

76.

 else // 𝑇𝑅𝑖𝑎_false

 𝑆𝑈𝑗→𝑆𝑟𝑖: requests 𝑇𝑅𝑖𝑎 correction,

 wait for corrected 𝑃𝑇,

 if received within time_threshold then

 return to step 63

 else

 execute Function F7// complain function

 endif

 endif

77.

78.

 𝐶𝐵𝑢: executes Function F2

 endif

79. end

Upon the completion of function F1, 𝐶𝐵𝑢 gathers all rated SLAs of 𝑆𝑟𝑖, per computational interval

and starts its computation process as described below.

2.6.3. Cloud broker computational algorithms

Functions (F2, F6 and F7) are executed by the cloud broker, as explained below. In Function F2

presented in algorithm 3, 𝐶𝐵𝑢 is responsible to collect all the rated 𝑆𝐿𝐴𝑖𝑎_𝑅 per 𝑆𝑟𝑖, counts and sends them as

a batch of rated SLA’s (𝑆𝐿𝐴𝑖𝑎_𝑅𝑛) to the CSM periodically for trust computation. This batch is sent

encrypted by the public key of the CSM and stamped with the date of F2 function execution “𝑌𝑑𝑖𝑎”.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 2, April 2022: 2121-2138

2130

Algorithm 3: Cloud broker computational-function F2
Algorithm code: F2.

Description: Cloud broker computational function.

Executed by the cloud broker.

1. Input: 𝐸𝑛 (𝑆𝐿𝐴𝑖𝑎_𝑅) 𝐶𝑆𝑀𝑃𝑢 per Sri

2. Output: Batch of (𝐸𝑛 (A, 𝑆𝐿𝐴𝑖𝑎_𝑅𝑛) 𝐶𝑆𝑀𝑃𝑢) + 𝑌𝑑𝑖𝑎 per Sri // 𝑌𝑑𝑖𝑎 date of computation

3.

4.

5.

6.

7.

let (𝐸𝑛 (𝑆𝐿𝐴𝑖𝑎_𝑅) 𝐶𝑆𝑀𝑃𝑢) be referred to as 𝑆𝐿𝐴𝑖𝑎_𝑅n
𝐶𝐵𝑢:

 A= count 𝑆𝐿𝐴𝑖𝑎_𝑅𝑛
 assign 𝑌𝑑𝑖𝑎 to current_date

𝐶𝐵𝑢→𝐶𝑆𝑀: Batch of (𝐸𝑛 (A, 𝑆𝐿𝐴𝑖𝑎_𝑅𝑛) 𝐶𝑆𝑀𝑃𝑢) + 𝑌𝑑𝑖𝑎

8. end

Algorithm 4 of Function F6, is called by function F1, where 𝐶𝐵𝑢 checks if 𝑆𝑈𝑗 had sent rated SLA

of its last transaction. If not, then 𝐶𝐵𝑢 executes penalty function E1 to penalize 𝑆𝑈𝑗, for its laziness. Function

F7 presented in algorithm 5, is called by function F1, where a 𝐶𝐵𝑢 checks whether 𝑆𝑟𝑖 had sent corrected

𝑇𝑅𝑖𝑎 or not, within a time_threshold. If not sent, 𝐶𝐵𝑢 broadcasts message 𝑀𝑇𝑅 accordingly to all network

providers, in order to stop dealing with the relevant 𝑆𝑟𝑖 until sending corrected 𝑇𝑅𝑖𝑎. The network provider

broadcasts 𝑀𝑇𝑅 to other cloud brokers as stated in algorithm 5.

Algorithm 4: Cloud broker checks SLA_R validity
Algorithm code: F6

Description: Cloud broker checks 𝑆𝐿𝐴𝑖𝑎_𝑅.
Executed by cloud broker.

1. Input: 𝑆𝐿𝐴𝑖𝑎_𝑅

2. Output: E1_SUj = true or E1_SUj = false

3. 𝐶𝐵𝑢:

4. if 𝑆𝐿𝐴𝑖𝑎_𝑅 = null then // did not send 𝑆𝐿𝐴𝑖𝑎_𝑅

5. generate E1_SUj = true

6. execute Penalty function E1

7. else

8. E1_SUj = false

9. endif

10. end

Algorithm 5: Cloud broker complain function against service provider
Algorithm code: F7

Description: Complain function against service provider.

Executed by cloud broker.

1. Input: 𝑇𝑅𝑖𝑎 correction=null.

2. Output: Cloud broker stops sending new job_request of any

3. SUj to Sri.
4. 𝐶𝐵𝑢→𝑆𝑟𝑖: requests 𝑇𝑅𝑖𝑎 correction

5. 𝐶𝐵𝑢: stops sending new job_request to 𝑆𝑟𝑖 until 𝑇𝑅𝑖𝑎

6. correction sent

7. 𝐶𝐵𝑢→NPw: broadcast MTR

8. where MTR=(pending 𝑇𝑅𝑖𝑎 correction, no new

9. job_requests)

10. NPw→CB: broadcast MTR

11. end

2.6.4. Penalties computational algorithms

Three penalty functions (E1, E2, E3) introduced in algorithms 6, 7 and 8 respectively, are described

below. Algorithm 6 describes penalty function E1, which is called by function F6, in case 𝑆𝑈𝑗 did not send

rated 𝑆𝐿𝐴𝑖𝑎_𝑅. In this function, a network provider broadcasts warning message 𝑀𝑆𝐿𝐴 to all cloud brokers, to

warn them not to accept any job requests from 𝑆𝑈𝑗 until sending the rated 𝑆𝐿𝐴𝑖𝑎_𝑅 as shown in algorithm 6.

Algorithm 6: Penalty function E1
Algorithm code: E1.

Description: Service user denied sending rated SLA.

Executed by cloud broker.
1. Input: E1_SUj=true.
2. Output: requests 𝑆𝐿𝐴𝑖𝑎_𝑅, job_request rejected
3. CBu:

4. job_request rejected of SUj

Int J Elec & Comp Eng ISSN: 2088-8708

 A trust evaluation scheme of service providers in mobile edge computing (Merrihan Badr Monir Mansour)

2131

5. CBu→NPw(SUj): MSLA

6. where MSLA=(pending 𝑆𝐿𝐴𝑖𝑎_𝑅, job_request rejected)

7. NPw(SUj)→ CB: broadcasts MSLA to nearby CBu, ∀ u,

8. CB→ SUj: E1_SUj, requests 𝑆𝐿𝐴𝑖𝑎_𝑅
9. end

Algorithm 7 presents penalty function E2, were it’s called by function F0, in case CSM discovers

that a previously registered 𝑆𝑟𝑖, is trying to register as a new provider to the MEC network. Hence, CSM

imposes penalty E2, which decreases 𝑆𝑟𝑖 processing performance value, in the first attempt. In case this

action is repeated again, malicious 𝑆𝑟𝑖 is temporarily blocked from accessing the MEC network by penalty

E5. Consequently, CSM sends warning message 𝑀𝑦 to the involved 𝐶𝐵𝑢 and requests from it to find a

replacement service provider, to delegate malicious 𝑆𝑟𝑖 tasks to a newly selected provider. 𝐶𝐵𝑢 broadcasts

this message to other cloud brokers and service providers, in order not to deal with malicious service provider

temporarily.

Algorithm 7: Penalty function E2
Algorithm code: Penalty function E2.

Description: Service provider re-register attempt to MEC network.

Executed by CSM.
1. Input: E2_Sri
2. Output: P(Sri) decreased or system temporarily block for accused Sri.

3. CSM:

4. join_request rejected

5. generate E2_(𝑆𝑟𝑖) // Penalty E2

6. count E2_Sri++

7. if E2_Sri =1 then

8. P(Sri)= P(Sri)-0.01

9. execute function F5

10. CSM→𝐶𝐵𝑢→𝑆𝑟𝑖:(𝐸𝑛(P(Sri), Tn(Sri) 𝑆𝑟𝑖𝑃𝑢
)

11. elseif

12. E2_Sri > 1 then

13. generate E5_Sri1 // system temporarily block from the network of

Sri1 for X-days

14. CSM→𝐶𝐵𝑢→𝑆𝑟𝑖1 : E5_𝑆𝑟𝑖1

15. CSM→𝐶𝐵𝑢(Sri): requests new Sri2 selection|| My

16. where My=[compromised Sri1]

17. 𝐶𝐵𝑢(Sri) → CB & Sr: broadcasts My to nearby 𝐶𝐵𝑢 & Sri, ∀ i & u

18. CBu: selects Sri2

19. 𝐶𝐵𝑢→ Sri2: job_delegation_request || My

20. where job_delegation_request=(job_request)

21. endif

22. end

On the other hand, penalty function E3, shown in algorithm 8, is called by function F4, in two cases;

case1: a 𝐶𝐵𝑢 postpones sending the total number 𝑆𝐿𝐴𝑖𝑎_𝑅, “A”, per 𝑆𝑟𝑖; case2: 𝐶𝐵𝑢 adjusts its computation

time (𝑌𝑑𝑖𝑎) as a malicious action, during its processing of function F2. In both cases, the 𝐶𝐵𝑢 is claimed to

be accused. 𝐶𝐵𝑢 is warned by warning number “W1”, and a message is sent to it by the CSM. If one of these

actions is repeated again, CSM sends warning number “W2” to the accused 𝐶𝐵𝑢. If the 𝐶𝐵𝑢 performs any of

these malicious actions for the third time, then penalty E4 is imposed by CSM, which deactivates 𝐶𝐵𝑢 from

accessing the MEC network for a predefined time (X-days).

Algorithm 8: Penalty function E3
Algorithm code: E3.

Description: Monitoring cloud broker actions.

Executed by CSM.

1. Input: E3_CBu.

2. Output: W1_CBu or W2_CBu or system temporarily block for CBu.

3. CSM:

4. generate E3_CBu

5. count E3_CBu++

6. if E3_CBu =1 then

7. generate W1_CBu

8. CSM→CBu: W1_CBu

9. elseif

10. E3_CBu =2

11. generate W2_CBu

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 2, April 2022: 2121-2138

2132

12. CSM→CBu: W2_CBu

13. else

14. generate E4_CBu1

15. CSM→CBu: E4_CBu1

16. CSM: performs system temporarily block from the network of CBu1 for X-
days

17. requests all stored (𝐸𝑛 (A, 𝑆𝐿𝐴𝑖𝑎_𝑅) 𝐶𝑆𝑀𝑃𝑢) from CBu1

18. CSM→NPw(CBu): requests new CBu2 selection || Mx

19. where Mx=[compromised CBu1]

20. NPw(CBu): selects nearby CBu2

21. NPw(CBu)→ CBu2: Mx

22. NPw(CBu)→CSM: newly selected CBu2

23. CBu2→ 𝑆𝑟𝑖 & 𝑆𝑈𝑗:broadcasts Mx

24. endif

25.end

In case of 𝐶𝐵𝑢 deactivation, CSM requests from the involved network provider to find a subsequent

cloud broker and delegates all its functions to the newly selected cloud broker, which continues all the

pending jobs. It also broadcasts a warning message (Mx) to all surrounding service providers and users, to

inform them of the compromised 𝐶𝐵𝑢. As shown, the penalty functions update the participating entities in

case a malicious participant is discovered, where this entity is banned from accessing the MEC network. This

optimizes the security of interactions on the MEC network.

2.6.5. Trust computational algorithms

Figure 4 shows the processing performance computation steps of 𝑆𝑟𝑖. Upon completion of function

F2 by the cloud broker, the processing performance evaluation of 𝑆𝑟𝑖, function F4 presented in algorithm 9, is

executed by the CSM per computational interval, given that “A > 0” (𝑆𝑟𝑖 had received jobs). In case a service

provider is working with more than one cloud broker, CSM could authenticate each provider by its unique

identity. Function F4 calls two other functions; function F3 (algorithm 10) for processing throughput

computation, and function F5 (algorithm 11), that evaluates service provider trust status.

Figure 4. Processing performance computation function-F4

Trust evaluation and all its parameters are evaluated by the CSM for three main reasons: 1- to

ensure accurate and fair trust computation for service providers, 2- to guarantee service provider data security

and confidentiality, 3- it helps service requesters to reveal trust values remotely prior starting their

interactions. 𝑆𝑟𝑖 age is computed to show its processing lifetime in the MEC network. Trust computation

begins by computing 𝑃𝐸1_T, 𝑃𝐸2_𝑇, 𝑃𝑇1_T, 𝑃𝑇2_T. Each of these parameters indicates the final status per

process “a” received by 𝑆𝑟𝑖. While the computed time difference 𝑇𝑅𝑖𝑎 ≥ 0, the average processing success

rate 𝑃𝐴𝑉 (𝑆𝑟𝑖) is computed. This is because there could be successful processes, in spite that 𝑆𝑟𝑖 had exceeded

the estimated agreed time 𝑆𝐸𝑖𝑎, but the service user had been patient enough. Therefore, this case is not

considered as a fully successful job and could indicate that the predetermined processing capacity is not

accurate for this 𝑆𝑟𝑖. However, this raises the processing throughput value for 𝑆𝑟𝑖 computed by function F3,

algorithm 10.

Int J Elec & Comp Eng ISSN: 2088-8708

 A trust evaluation scheme of service providers in mobile edge computing (Merrihan Badr Monir Mansour)

2133

While the processing incompliance 𝑃𝐼(𝑆𝑟𝑖) and user termination ratio 𝑈𝑇𝑅(𝑆𝑟𝑖) are computed, in

case 𝑈𝑇𝑅(𝑆𝑟𝑖) exceeds user termination threshold, a warning is generated and sent to the relevant 𝑆𝑟𝑖 via the

𝐶𝐵𝑢. This is to alarm 𝑆𝑟𝑖 of its high user termination ratio. Consequently, the processing performance P(𝑆𝑟𝑖)

is computed, then function F5 is executed, to get 𝑆𝑟𝑖 trust status. These results are encrypted by CSM and

sent to 𝑆𝑟𝑖 via its 𝐶𝐵𝑢. Processing throughput computation, function F3 (algorithm 10), is computed based on

the number of successful processes 𝑃𝐸1_𝑇 executed by 𝑆𝑟𝑖, (equation (6)). Based on the computed processing

performance P(𝑆𝑟𝑖), 𝑆𝑟𝑖 is assigned one of six trust states by function F5, as shown in algorithm 11.

Algorithm 9: Processing performance computation-function F4
Algorithm code: F4.

Description: Processing performance computation function.

Executed by CSM.
1. Input: (𝐸𝑛 (𝐴, 𝑆𝐿𝐴𝑖𝑎_𝑅𝑛) 𝐶𝑆𝑀𝑃𝑢) + 𝑌𝑑𝑖𝑎
2. Output: P(𝑆𝑟𝑖) computed
3. 𝐶𝐵𝑢→𝐶𝑆𝑀: batch of (𝐸𝑛 (𝐴, 𝑆𝐿𝐴𝑖𝑎_𝑅𝑛) 𝐶𝑆𝑀𝑃𝑢) + 𝑌𝑑𝑖𝑎

4. CSM:

5. decrypt (𝐸𝑛 (𝐴, 𝑆𝐿𝐴𝑖𝑎_𝑅𝑛) 𝐶𝑆𝑀𝑃𝑢)
6. if 𝑌𝑑𝑖𝑎 exceeded last_day of month then

7. execute Penalty function E3

8. endif

9. if 𝑌𝑑𝑖𝑎 ≥ 𝑃𝑎𝑒𝑡_𝑙𝑎𝑠𝑡 then
10. for a=1 to A

11. compute

12. 𝑃𝐸1_T, 𝑃𝐸2_𝑇, 𝑃𝑇1_T, 𝑃𝑇2_T,

13. 𝑆𝑟𝑖_𝑎𝑔𝑒= Current_date - 𝑆𝑟𝑖_𝑏𝑖𝑟𝑡ℎ

14. if 𝑃𝐸1_T ≥1 then

15. execute Function F3 // compute PT(𝑆𝑟𝑖)
16. if 𝑇𝑅𝑖𝑎 ≥ 0 then

17. compute 𝑃𝐴𝑉 (𝑆𝑟𝑖) =
 𝑃𝐸1_𝑇

𝐴
 // equation (3)

18. endif

19. elseif 𝑃𝐸2_𝑇≥ 1 or 𝑃𝑇1_T ≥ 1

20. compute 𝑃𝐼(𝑆𝑟𝑖) =
𝑃𝐸2_𝑇+𝑃𝑇1_𝑇

𝐴
 // equation (4)

21. elseif 𝑃𝑇2_T ≥ 1

22. compute 𝑈𝑇𝑅(𝑆𝑟𝑖) =
 𝑃𝑇2_𝑇

 𝐴
 // equation (5)

23. if 𝑈𝑇𝑅(𝑆𝑟𝑖) ≥ user termination threshold then
24. generate W1_Sri

25. CSM→ 𝐶𝐵𝑢: W1_Sri

26. 𝐶𝐵𝑢→Sri: W1_Sri

27. endif

28. else

29. PT(𝑆𝑟𝑖)=0, 𝑃𝐴𝑉 (𝑆𝑟𝑖)=0, 𝑃𝐼(𝑆𝑟𝑖)=0, 𝑈𝑇𝑅(𝑆𝑟𝑖)=0
30. endif

31. endfor

32. else

33. 𝐶𝐵𝑢=compromised

34. execute Penalty function E3

35. endif

36. compute P(Sri) // equation (7)
37. execute function F5

38. CSM→𝐶𝐵𝑢: (𝐸𝑛 (PT(𝑆𝑟𝑖), 𝑃𝐴𝑉 (𝑆𝑟𝑖), P(𝑆𝑟𝑖), 𝑃𝐼(𝑆𝑟𝑖), 𝑈𝑇𝑅(𝑆𝑟𝑖), Tn(Sri)) 𝑆𝑟𝑖𝑃𝑢
) &

39. (𝐸𝑛 (P(Sri), Tn(Sri)) 𝐶𝐵𝑢𝑃𝑢
)

41. 𝐶𝐵𝑢→𝑆𝑟𝑖: (𝐸𝑛 (PT(𝑆𝑟𝑖), 𝑃𝐴𝑉 (𝑆𝑟𝑖), P(𝑆𝑟𝑖), 𝑃𝐼(𝑆𝑟𝑖), 𝑈𝑇𝑅(𝑆𝑟𝑖), Tn(Sri)) 𝑆𝑟𝑖𝑃𝑢
)

42. end

Algorithm 10: Processing throughput computation-function F3
Algorithm code: F3.

Description: Processing throughput computation function.

Executed by CSM.

1. Input: PE1_T.

2. Output: PT(Sri) // processing throughput computation per computational interval for
Sri.

3. CSM :

4. if (PE1_T ≤ 5,000) then

5. Points(𝑆𝑟𝑖) = Ceil (PE1_T/10,000)

6. elseif (PE1_T ≤ 10,000) then

7. Points(𝑆𝑟𝑖) = 0.6

8. elseif (PE1_T ≤ 100,000) then

9. Points(𝑆𝑟𝑖) = 0.7

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 2, April 2022: 2121-2138

2134

10. elseif (PE1_T ≤ 1,000,000) then

11. Points(𝑆𝑟𝑖) = 0.8

12. else if (PE1_T ≤ 10,000,000) then

13. Points(𝑆𝑟𝑖) = 0.9

14. else

15. Points(𝑆𝑟𝑖) = 1

16. return PT(Sri)= Points(Sri)

17. endif

18. end

Algorithm 11: Trust status computation algorithm-function F5
Algorithm code: F5.

Description: Trust status computation function.

Executed by CSM.

1. Input: P(𝑆𝑟𝑖)
2. Output: Tn(Sri)
3. CSM:

4. If P(𝑆𝑟𝑖) ≤0 then
5. Tn(Sri)= “untrusted service provider”
6. elseif P(𝑆𝑟𝑖) ≤ 0.3 then
7. Tn(Sri)= “weak service provider”
8. elseif P(𝑆𝑟𝑖) ≤ 0.5 then
9. Tn(Sri)= “average service provider”
10. elseif P(𝑆𝑟𝑖) ≤ 0.7 then
11. Tn(Sri)= “good service provider”
12. elseif P(𝑆𝑟𝑖) ≤ 0.9 then
13. Tn(Sri)= “very good service provider”
14. else

15. Tn(Sri)= “ excellent service provider”
16. endif

17. return Tn(Sri)
18. end

Upon the completion of the above functions, each service provider will be assigned a trust status

based on its computed processing performance value. This trust status disseminates service provider’s

processing performance during its service provisioning in the MEC network.

3. RESULTS AND DISCUSSION

Simulation results of the proposed architecture are shown in section 3.1, while the efficiency and

effectiveness of proposed scheme are discussed in section 3.2. Section 3.3 presents a comparison between the

proposed architecture and some previous protocols.

3.1. Simulation results

Simulation of the proposed model was performed using MATLAB program. Simulation setup:

− five different service providers were considered, 𝑆𝑟𝑖 = {1,2,3,4,5}.

− initial trust value for each 𝑆𝑟𝑖= zero.

− all 𝑆𝑟𝑖 received the same number of job requests, in one job_type{Job3}, from various service users.

− computation intervals = 5 (1 month duration each)

− 𝑃𝐸1_T, 𝑃𝐸2_𝑇, 𝑃𝑇1_T, 𝑃𝑇2_T values: were assigned to each 𝑆𝑟𝑖 according to uniform random number

generation per month.

− hardware PC configuration = core i7, RAM 6 GB and hard disk 1 Tera.

Trust evaluation was performed over the five months. 𝑆𝑟𝑖 is evaluated according to its processing

performance in its predefined job type. The processing throughput PT(𝑆𝑟𝑖) results for each service provider

per “m” month are shown in Figure 5. While the average processing success rate 𝑃𝐴𝑉 (𝑆𝑟𝑖) results are given

Figure 6.

Upon measuring the processing throughput and average success rate, the processing performance

P(𝑆𝑟𝑖) is computed as presented in Figure 7 and the relevant trust status per 𝑆𝑟𝑖 over the five months, is

shown in Table 3. Figure 8 reveals the processing incompliance (failure ratio) PI(𝑆𝑟𝑖) and Figure 9 shows the

user termination ratio per 𝑆𝑟𝑖. Results show that service providers 1 and 2, trust status had improved

gradually by time, because of their improvement in terms of processing throughput and average processing

success rate over the five months. With this improve, processing incompliance and user termination ratio, had

decreased as shown Figures 8 and 9. Service provider 3 trust status kept varying by time, within a good to

Int J Elec & Comp Eng ISSN: 2088-8708

 A trust evaluation scheme of service providers in mobile edge computing (Merrihan Badr Monir Mansour)

2135

average range. While service provider 4 maintained its good trust status over the five months, however its

processing incompliance acts as a major drawback as illustrated in Figure 8. Service provider 5, kept its

excellent processing performance over the five months since its processing incompliance and user

termination ratio are very low. Thus, simulation results could identify the processing performance of all five

service providers, together with their processing incompliance and user termination ratios, showing their

respective trust status.

3.2. Efficiency and effectiveness of the proposed architecture

Analysis of the proposed architecture shows that the evaluation time is considerably low, due to the

simplicity of the used equations. Processing performance evaluation and trust status results are updated

periodically by CSM (fully trusted entity), which increases results credibility. In addition, maintaining a

history record decreases service provider trust evaluation time, since it’s performed in an accumulative

manner. A service provider is registered only once to the MEC network using its unique credentials. This

encounters attacks such as fake or malicious service providers, who could deceive users by hiding their bad

history.

As the number of service providers increases, the proposed architecture could still distinguish each

service provider using its assigned trust status and processing performance value. This validates service

providers’ computational services trust level and history in the MEC network, which promotes for trusted and

secured transactions. A service user is also given a recommendation list of available service providers to

choose from, according to user’s computational requirements and preferences.

3.3. Comparison with previous protocols

Table 4 shows a comparison of the proposed architecture evaluation parameters with previous

works. The major limitations/discussion for each one of them.

Figure 5. Processing throughput per service provider

Figure 6. Average processing success rate per

service provider

Figure 7. Processing performance per service provider

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M 1 M 2 M 3 M 4 M 5

P R O C E S S I N G T H R O U G H P U T

Sr1 Sr2 Sr3 Sr4 Sr5

0.00

0.20

0.40

0.60

0.80

1.00

1.20

M 1 M 2 M 3 M 4 M 5

A V E R A G E P R O C E S S I N G S U C C E S S R A T E

Sr1 Sr2 Sr3 Sr4 Sr5

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

M 1 M 2 M 3 M 4 M 5

P R O C E S S I N G P E R F O R M A N C E

Sr1 Sr2 Sr3 Sr4 Sr5

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 2, April 2022: 2121-2138

2136

Table 3. Trust status per service provider in “m” months
𝑆𝑟𝑖 M1 M2 M3 M4 M5

𝑆𝑟1 Weak Weak Average Good Good

𝑆𝑟2 Average Good Good Very good Very good

𝑆𝑟3 Good Average Good Good Average

𝑆𝑟4 Good Good Good Good Good

𝑆𝑟5 Excellent Excellent Very good Very good Very good

Figure 8. Processing incompliance per service provider

Figure 9. Service providers’ user termination ratio

Table 4. Comparison of the proposed architecture and previous work

Protocol
Service Provider Assessed

Parameters

Evaluation

Domain

Trust Update
Limitations/Discussion

Static Dynamic

[17]

2018

Security methods applied in

terms of: i) authentication, ii)
firewall systems; iii)

encryption mechanisms, iv)
intrusion detection

Computation-

based
√

Did not consider sudden attacks that could

occur to a node, such as hacking.

[18]

2020

Performance in terms of:

-identity authentication
-hardware capabilities

-interactions’ behavior

Reputation-

based
(Direct/indirect

trust)

 √ Depended only on users’ opinions.

Collusion attack may occur.

[19]
2018

Performance in terms of:
-identity authentication

-capabilities (availability,

response time, throughput,
deployed hardware)

-interactions’ behavior

Feedback-
based &

computation-

based

 Partial Trust computation is performed by an
unknown entity, which makes trust results

sharing difficult.

Trust computation is complicated and time
consuming.

[20]
2018

Analyze traffic flows between
two communicating entities.

Computation-
based

 √ No processing parameters are evaluated.

Proposed

Protocol
2020

Processing performance in

terms of:
-processing throughput

-average processing success

rate
-processing incompliance

-user termination ratio.

Computation-

based

 √ No human interaction involved, which

guarantees results credibility.
History capturing decreases computational

overhead and limits re-register attack.

Dynamic updating of results shows recent
trust status of a service provider in the

MEC network.

Proposed a penalty system to track
malicious entities.

4. CONCLUSION AND FUTURE WORK

Trust was evaluated by computing the processing performance of a service provider, through

gaining its average processing success rate and processing throughput. However, processing incompliance

and user termination ratio were computed, to accurately determine service providers’ performance in the

MEC network. The proposed penalty system provided a close monitoring to the participating entities in the

MEC network. By capturing the historical trust results, there is no need to evaluate a service provider trust

status before the start of each interaction. Thus, gaining accurate and fair trust results with less computation

overhead and minimal human interference.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

M 1 M 2 M 3 M 4 M 5

P R O C E S S I N G I N C O M P L I A N C E

Sr1 Sr2 Sr3 Sr4 Sr5

0.00

0.02

0.04

0.06

0.08

0.10

0.12

M 1 M 2 M 3 M 4 M 5

U S E R T E R M I N A T I O N R A T I O

Sr1 Sr2 Sr3 Sr4 Sr5

Int J Elec & Comp Eng ISSN: 2088-8708

 A trust evaluation scheme of service providers in mobile edge computing (Merrihan Badr Monir Mansour)

2137

Simulation results showed that, the higher average processing success rate and throughput, the better

processing performance and trust status evaluation gained for a service provider. On the other hand, results

illustrated that high processing incompliance or user termination ratio, are reflected in a low processing

performance value for a service provider. Thus, maintaining service users’ reliability and securing future

interactions in the MEC environment. For future work, we plan to evaluate service providers’ deployed

hardware and software resources. In this context, security measures, scheduling algorithms, fault tolerant

protocols deployed by a service provider should be considered during trust evaluation. On the other hand, the

number and types of warnings imposed on a service provider, due to performing unauthorized actions should

also be considered and analyzed in the future. Given that all acting entities are registered in the network

through the network provider, a network provider could act as a cloud broker or even a service provider. On

the other hand, a cloud broker could also act as a service provider. However, it will be recommended to

review the trust evaluation parameters for these acting entities.

REFERENCES
[1] S. N. Shirazi, A. Gouglidis, A. Farshad, and D. Hutchison, “The extended cloud: Review and analysis of mobile edge computing

and fog from a security and resilience perspective,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 11,

pp. 2586–2595, Nov. 2017, doi: 10.1109/JSAC.2017.2760478.
[2] H. Li, G. Shou, Y. Hu, and Z. Guo, “Mobile edge computing: progress and challenges,” in Proceedings - 2016 4th IEEE

International Conference on Mobile Cloud Computing, Services, and Engineering, MobileCloud 2016, 2016, pp. 83–84, doi:
10.1109/MobileCloud.2016.16.

[3] K. Dolui and S. K. Datta, “Comparison of edge computing implementations: fog computing, cloudlet and mobile edge

computing,” in GIoTS 2017 - Global Internet of Things Summit, Proceedings, 2017, doi: 10.1109/GIOTS.2017.8016213.
[4] B. Liang, “Mobile edge computing,” in Key Technologies for 5G Wireless Systems, V. W. S. Wong, R. Schober, D. W. K. Ng,

and L.-C. Wang, Eds. Cambridge University Press, 2017, pp. 76–91.

[5] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing: a Survey,” IEEE Internet of Things Journal, vol. 5,
no. 1, pp. 450–465, Feb. 2018, doi: 10.1109/JIOT.2017.2750180.

[6] H. El-Sayed et al., “Edge of things: the big picture on the integration of edge, IoT and the cloud in a distributed computing

environment,” IEEE Access, vol. 6, pp. 1706–1717, 2017, doi: 10.1109/ACCESS.2017.2780087.
[7] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A survey on mobile edge networks: convergence of computing,

caching and communications,” IEEE Access, vol. 5, pp. 6757–6779, 2017, doi: 10.1109/ACCESS.2017.2685434.

[8] J. Tan, R. Gandhi, and P. Narasimhan, “Challenges in security and privacy for mobile edge-clouds,” Parallel Data Laboratory

Carnegie Mellon University Pittsburgh, 2014.

[9] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing: the communication perspective,”

IEEE Communications Surveys and Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017, doi: 10.1109/COMST.2017.2745201.
[10] P. Mach and Z. Becvar, “Mobile edge computing: a survey on architecture and computation offloading,” IEEE Communications

Surveys and Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017, doi: 10.1109/COMST.2017.2682318.

[11] M. B. Monir, M. H. Abdelaziz, A. A. Abdelhamid, and E. S. M. Ei-Horbaty, “Trust management in cloud computing: a survey,”
in 2015 IEEE 7th International Conference on Intelligent Computing and Information Systems, ICICIS 2015, 2016, pp. 231–242,

doi: 10.1109/IntelCIS.2015.7397227.

[12] A. Ahmed and E. Ahmed, “A survey on mobile edge computing,” in Proceedings of the 10th International Conference on
Intelligent Systems and Control, ISCO 2016, 2016, doi: 10.1109/ISCO.2016.7727082.

[13] N. Makitalo, A. Ometov, J. Kannisto, S. Andreev, Y. Koucheryavy, and T. Mikkonen, “Safe and secure execution at the network

edge: a framework for coordinating cloud, fog, and edge,” IEEE Software, pp. 1–1, 2018, doi: 10.1109/MS.2018.110164708.
[14] J. Yuan and X. Li, “A reliable and lightweight trust computing mechanism for IoT edge devices based on multi-source feedback

information fusion,” IEEE Access, vol. 6, pp. 23626–23638, 2018, doi: 10.1109/ACCESS.2018.2831898.

[15] V. Vassilakis, E. Panaousis, and H. Mouratidis, “Security challenges of small cell as a service in virtualized mobile edge
computing environments,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 9895 LNCS, Springer International Publishing, 2016, pp. 70–84.

[16] F. Pop, C. Dobre, B. C. Mocanu, O. M. Citoteanu, and F. Xhafa, “Trust models for efficient communication in mobile cloud
computing and their applications to e-commerce,” Enterprise Information Systems, vol. 10, no. 9, pp. 982–1000, Dec. 2016, doi:

10.1080/17517575.2015.1100756.

[17] F. J. Mora-Gimeno, H. Mora-Mora, D. Marcos-Jorquera, and B. Volckaert, “A secure multi-tier mobile edge computing model for
data processing offloading based on degree of trust,” Sensors (Switzerland), vol. 18, no. 10, p. 3211, Sep. 2018, doi:

10.3390/s18103211.

[18] X. Deng, J. Liu, L. Wang, and Z. Zhao, “A trust evaluation system based on reputation data in Mobile edge computing network,”
Peer-to-Peer Networking and Applications, vol. 13, no. 5, pp. 1744–1755, Feb. 2020, doi: 10.1007/s12083-020-00889-3.

[19] X. Ma and X. Li, “Trust evaluation model in edge computing based on integrated trust,” in ACM International Conference

Proceeding Series, 2018, doi: 10.1145/3302425.3302491.
[20] Y. Ruan, A. Durresi, and S. Uslu, “Trust assessment for internet of things in multi-access edge computing,” in Proceedings -

International Conference on Advanced Information Networking and Applications, AINA, 2018, vol. 2018-May, pp. 1155–1161,

doi: 10.1109/AINA.2018.00165.
[21] M. H. Ur Rehman, P. P. Jayaraman, S. Ur Rehman Malik, A. Ur Rehman Khan, and M. M. Gaber, “RedEdge: a novel architecture

for big data processing in mobile edge computing environments,” Journal of Sensor and Actuator Networks, vol. 6, no. 3, p. 17,

Aug. 2017, doi: 10.3390/jsan6030017.
[22] S. M. Habib, S. Hauke, S. Ries, and M. Mühlhäuser, “Trust as a facilitator in cloud computing: a survey,” Journal of Cloud

Computing, vol. 1, no. 1, pp. 1–18, 2012, doi: 10.1186/2192-113X-1-19.

[23] H. Bangui, S. Rakrak, S. Raghay, and B. Buhnova, “Moving to the edge-cloud-of-things: recent advances and future research
directions,” Electronics (Switzerland), vol. 7, no. 11, p. 309, Nov. 2018, doi: 10.3390/electronics7110309.

[24] J. Huang and D. M. Nicol, “Trust mechanisms for cloud computing,” Journal of Cloud Computing, vol. 2, no. 1, p. 9, 2013, doi:
10.1186/2192-113X-2-9.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 2, April 2022: 2121-2138

2138

[25] I. Oteyo, D. P. Mirembe, and M. P. Nampala, “Scaling trust and reputation management in cloud services,” International Journal

of Applied Science and Technology, vol. 6, pp. 50–57, 2016.
[26] C. Uikey and D. S. Bhilare, “A broker based trust model for cloud computing environment,” International Journal of Emerging

Technology and Advanced Engineering, vol. 3, no. 11, 2013.

[27] R. Shaikh and M. Sasikumar, “Trust model for measuring security strength of cloud computing service,” Procedia Computer
Science, vol. 45, no. C, pp. 380–389, 2015, doi: 10.1016/j.procs.2015.03.165.

[28] V. Vassilakis et al., “Security analysis of mobile edge computing in virtualized small cell networks,” in IFIP Advances in

Information and Communication Technology, vol. 475, Springer International Publishing, 2016, pp. 653–665.
[29] A. Gholami and M. G. Arani, “A trust model based on quality of service in cloud computing environment,” International Journal

of Database Theory and Application, vol. 8, no. 5, pp. 161–170, Oct. 2015, doi: 10.14257/ijdta.2015.8.5.13.

[30] A. Yousefpour et al., “All one needs to know about fog computing and related edge computing paradigms: a complete survey,”
Journal of Systems Architecture, vol. 98, pp. 289–330, Sep. 2019, doi: 10.1016/j.sysarc.2019.02.009.

[31] M. B. Monir, T. Abdelkader, and E. S. M. Ei-Horbaty, “Trust evaluation of service level agreement for service providers in

mobile edge computing,” in Proceedings - 2019 IEEE 9th International Conference on Intelligent Computing and Information
Systems, ICICIS 2019, 2019, pp. 362–369, doi: 10.1109/ICICIS46948.2019.9014854.

[32] F. Zohra Filali and B. Yagoubi, “Global trust: a trust model for cloud service selection,” International Journal of Computer

Network and Information Security, vol. 7, no. 5, pp. 41–50, Apr. 2015, doi: 10.5815/ijcnis.2015.05.06.
[33] F. Meixner and R. Buettner, “Trust as an integral part for success of cloud computing,” in ICIW 2012, 2012.

[34] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge computing: a survey,” Future Generation Computer Systems,

vol. 97, pp. 219–235, Aug. 2019, doi: 10.1016/j.future.2019.02.050.

