
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

Chapter 4

Reliable Web Service Consumption Through Mobile
Cloud Computing

Amr S. Abdelfattah, Tamer Abdelkader and
EI-Sayed M. EI-Horbaty

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74461

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Amr S. Abdelfattah, Tamer Abdelkader and
EI-Sayed M. EI-Horbaty

Additional information is available at the end of the chapter

Abstract

The mobile intermittent wireless connectivity limits the evolution of the mobile land-
scape. Achieving web service reliability results in low communication overhead and cor-
rect retrieval of the appropriate state response. In this chapter, we discuss and analyze
two approaches based on middleware approach, Reliable Service Architecture using
Middleware (RSAM), and Reliable Approach using Middleware and WebSocket (RAMWS).
These approaches achieve the reliability of web services consumed by mobile devices and
propose an enhanced architecture that achieves the reliability under various conditions
with minimum communication data overhead. In these experiments, we covered several
cases to prove the achievement of reliability. Results also show that the request size was
found to be constant, the response size is identical to the traditional architecture, and the
increase in the consumption time was less than 5% with the different response sizes.

Keywords: web service, WebSocket, mobile consumption, middleware, timeout
problem

1. Introduction

The evolution of the mobile landscape coupled with the Internet nature and the recent explo-

sion of the cloud computing technology is facilitating the deployment of web services. The
web services are the perfect way to provide a standard platform for mobile application com-

munication through the Internet.

Smartphones are gradually becoming the effective client platform to consume the services
and the pool of data and information [1].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

The mobiles are uncomfortable because of their limited processing power and intermittent
wireless connectivity. In terms of that, there is an uncertainty of whether the web service
request was successfully received, was lost on the Internet before reaching the server, or was
partially processed. In the case the application retries the operation and resends the request,
it may be duplicated or cause an error, such as two orders entered or two credit card charges.

Most of the cloud-oriented services and data are deployed as web services that are network-
oriented applications [2]. The synchronization between a mobile device and a web service is
achieved through initiating a conversation in a request-response pattern.

Mobile cloud computing (MCC) is the combination of cloud computing, mobile computing,
and wireless networking to bring rich computational resources to mobile users, network
operators, as well as cloud computing providers. That enables the applications that could not
run on the mobile device due to the mentioned constraints and can now be delivered to users
of these devices [3].

The reliable web services through mobile cloud computing is achieved using approaches
that focus on ensuring the request execution under the intermittent connectivity and ser-
vice unavailability conditions, moreover ensuring the appropriate response according to the
request state.

1.1. Web service types and limitations

The web service architecture (WSA) [4] proposed by W3 organization relies on a number of web
standards, such as Simple Object Access Protocol (SOAP), Web Service Description Language
(WSDL), Extensible Markup Language (XML), and Universal Description Discovery and Integration
(UDDI) that allow services to be searched, described, and integrated by any application [5].

There are two types of web services: Simple Object Access Protocol (SOAP) and Representa-
tional State Transfer (REST).

SOAP web service consumption requires extra effort mostly due to the lack of native support.
The two major SOAP-based web service limitations are categorized mainly to communication
and computation overhead [5].

In the REST architecture, standardized interface and protocol are used for representing resources
between clients and servers. These principles encourage REST applications to be simple, be
lightweight, and have high performance. Therefore, regarding the scope of reliability, RESTFUL
services overcome SOAP service limitations and achieve better results especially in mobile com-

munications [6–8]. Using REST as service architecture is preferred for mobile devices because
REST services use HTTP request and response, which means that a mobile device connected with
the Internet can access the service without additional overhead, unlike SOAP web services [9].

1.2. WebSocket

The WebSocket protocol is a full-duplex protocol over a TCP connection that typically pro-
vides bidirectional communication between web browsers and web servers. It is used to facili-
tate the real-time data transfer from and to the server [10].

Mobile Computing - Technology and Applications58

1.3. Reliability and challenges

The challenges in web service consumption using mobile client are worth analyzed from two
perspectives: mobile limitations and connectivity limitations from both mobile and cloud ser-

vice provider sides. The challenges are listed in the following points:

• Connection loss: The smartphones perspective, clients have an intermittent connection be-

cause of their mobility. They can be momentarily removed from the connected network
and later join the available network [9]. From the perspective of cloud/server, it may lose
the connection, and their web services become unreachable from clients.

• Latency/bandwidth: The very limited bandwidth mobile cellular networks are often billed
based on the data transferred amount.

• Timeout: The service timeout problem is one of the issues in the mobile experience, such
that the service response size, database relations’ communication time, and the required
computations in the services are continuously increasing corresponding to the application
usage during the time, which causes repeat timeout through the consumption of these
services.

1.4. Reliable web service approaches

Middleware approach and mobile agent (MA) approach are the most recent approaches that
are used for achieving the reliability of web services.

In this chapter, we will discuss, analyze, and focus on the middleware-based approaches.

2. Background

Different architectures are implemented based on the following the middleware approach.
The middleware is applied in more than context with a different purpose.

2.1. Middleware approach

The middleware component is responsible for retrieving the response from the web service,
such that it acts as a gateway that communicates lightly with the client.

The middleware solution for mobile clients mostly focuses on application and content adapta-

tion. The proposed communication architecture introduces a gateway between the mobile cli-
ent and the web service that takes the heavy load communication with the service. The mobile
client will instead have to sustain a lightweight and simple client–server communication over
a fast binary protocol [11].

a. Middleware architecture

The middleware architecture, as shown in Figure 1, consists of the following three components:

Reliable Web Service Consumption Through Mobile Cloud Computing
http://dx.doi.org/10.5772/intechopen.74461

59

1. A mobile device that has Internet access.

2. A web application that contains web services connected to a database.

3. A web application that represents the middleware contains web service consumption and
data handling modules.

b. Middleware advantages

The middleware advantages are summarized as follows:

• Small bandwidth usage because of the light communication with the mobile client.

• This architecture brings more opportunities toward ensuring a more reliable communica-

tion with the web service such as:

 ○ The middleware will often run on dedicated hardware that will justify the search for
solutions to ensure some kind of state of the communication with a web service.

 ○ Retry mechanisms can be explored in case of connection failures.

 ○ The middleware can retain the state of the overall communication and retry to continue
when all parties come back online, such as in the case of communication failures (mobile
device to middleware or middleware to web service).

c. Middleware limitations

The main middleware limitation is the increasing of the overall duration of a request to the
web service and to process the data format, but deploying the middleware and the actual web
service in the same server instance network can enhance this.

Figure 1. Middleware architecture and the communication process between its components.

Mobile Computing - Technology and Applications60

3. Reliable service architecture using middleware (RSAM)

This section describes the proposed architecture RSAM [12]. In this section, the proposed
architecture is presented and how it is used to improve the web service consumption reliabil-
ity through mobile cloud computing. It also illustrates how the proposed approach overcomes
the web service consumption and their reliability limitations mentioned in the above sections.

The enhanced middleware architecture focuses on the integration between the mobile client
and service layer, so the architecture is defined as client middleware component and service
middleware component. This integration increases the system awareness for each request
state to be notified to the user appropriately.

3.1. RSAM architecture

In this architecture, the mobile consumer component has the permission to consume a cloud
service directly without passing through the middleware, which creates the flexibility to cus-
tomize system communications.

The enhanced architecture components and their communications are shown in Figure 2,
which contain two main components:

Figure 2. RSAM architecture and the communication process between its components.

Reliable Web Service Consumption Through Mobile Cloud Computing
http://dx.doi.org/10.5772/intechopen.74461

61

• Cloud service consumer (CSC) is a mobile client middleware component responsible for:

 ○ Constructing the request with its appropriate attributes to be ready for sending

 ○ Handling the request communication cycle either to the cloud service directly or through
the service middleware component

 ○ Receiving the response and notifying the client with the appropriate state

• Middleware service component (MSC) is a cloud service middleware component respon-

sible for:

 ○ Receiving the request from the client service consumer and constructing the appropriate
response regarding the sent request attributes.

 ○ Communicating with the required cloud service.

 ○ Caching the request and response states to be tracked for later usage.

 ○ A detailed description of the architecture is in the following subsections.

3.1.1. Cloud service consumer (CSC)

The CSC is the client middleware component responsible for handling the request communi-
cation cycle starting from the service call till the response notification.

There are attributes that affect the consumer and support it to track and handle the consump-

tion process as a separate component, as shown in the following:

• Service descriptor is the module that contains the routing mechanism regarding the base
cloud service URL and the middleware component URL and has the description of each
service in the system. This descriptor consists of:

 ○ Basic attributes that describe the services, such as the service name, request type, param-

eter names, parameter types, and expected response type with its appropriate parser.

 ○ Semantic attributes that affect the behavior of the execution, such as:

• The forced attributes that force the MSC to use the succeeded cached results or for-

ward the request to the cloud service each time

• The direct attribute that controls the request route to the middleware or to the cloud
service directly

 ○ Request client Id is the unique identifier overall requests in the system; it consists of two
main parts:

• Basic part is the unique auto-generated key that consists of subparts that ensure its
distinct property, such as mobile device manufacture number, the request timestamp,
and the requested service name.

Mobile Computing - Technology and Applications62

• Additional attributes part is the other part that includes labeled attributes that change
the MSC behavior regarding the received request such as the request number of trials
and forced attribute.

The sequence of the client service consumer is illustrated in Figure 3. The following algorithm
highlights its steps:

1. [Mobile User] select a specific service in the application to invoke.

2. [Client Id generator] generate valid client id as designed in the middleware validation
method.

3. [Service Descriptor] construct the request with its specific attributes.

4. [Service Consumer] send the request to the middleware or direct to the specified cloud ser-

vice as attributed. [Service Client Manager] update the request attributes in the persistence
storage based on the response state.

5. [Service Client Manager] adapt the response based on its state.

6. [Service Client Manager] notify the user with the appropriate response that shows the suitable
state.

This sequence is performed in the mobile client part in two stages:

1. Preparation: The CSC prepares and constructs the appropriated request with its attributes,
in order to be fit in the middleware request validation agreement.

2. Consumption: The stage of consuming the specific web service using the constructed re-

quest through middleware and receiving the appropriate response to show it to the user
in its reliable form.

Figure 3. Cloud service consumer sequence.

Reliable Web Service Consumption Through Mobile Cloud Computing
http://dx.doi.org/10.5772/intechopen.74461

63

3.1.2. Middleware service component (MSC)

The cloud middleware component is the other integrated part with the cloud service con-
sumer, such that it is responsible for handling the received request and proceeding to the
appropriate function to send the response back to the client consumer.

The middleware component sequence is shown in Figure 4. It begins acting once a client
request is received.

The sequence of the service middleware component is illustrated in Figure 4. The following
algorithm highlights its steps:

1. [Mobile device] sends a request.

2. [Middleware request filter] receive the request to ensure it is included in the allowed
ones.

3. [Request manager] initialize the request holder.

4. [Parser Manager] parse the request to extract the attributes included in the request.

5. [Validation Manager] ensure the request and the attached client id attribute validity.

6. [Database Manager] save the validated request in the persistence storage.

7. [Web service Consumer] consume the attached cloud service using the sent request.

8. [Database Manager] save the response in the persistence storage with a relation with the
saved request.

9. [Request Filer] respond to the mobile device with the response.

Figure 4. Service middleware component sequence.

Mobile Computing - Technology and Applications64

This process follows three stages:

i. Pre-processing: The service middleware component parses the request to extract the cli-
ent identifier and its attributes and then validates the request to ensure whether it is cor-

rect and secure or not.

ii. Processing: In the case of request validation success, the service middleware retrieves the
similar previous cached request or saves this request details in its cache if it did not exist
before; then there are two possible cases to follow regarding the different request cases:

a. Forward the request to the cloud service if:

i. It was the first time invoking this request.

ii. It is intended for the client consumer to retry this request.

iii. The request is labeled with the forced attribute.

b. Return the middleware component cached results, if this request is invoked before with a
successful result.

iii. Post-processing: The service middleware component constructs the appropriate response
and caches its details according to the action taken in the processing step. It then sends
this response to the mobile consumer to notify the user with the appropriate request state.

3.2. RSAM protocol

The enhanced architecture achieves cloud service reliability while considering the most
affected cases illustrated in Table 1.

The architecture process flow shown in Figure 5 covers these possible cases, such that it
mainly depends on the middleware components in client consumer and middleware to track
the state of each request to be able to notify the user with the appropriate response.

The possible response states shown in Figure 5 contain the following:

• Succeeded and failed states that explicitly indicate the success and failure of the request
execution.

• Cached state that informs the user that the response was cached in the middleware from
previous execution for the same request. This state covers two cases:

 ○ Preventing the duplicated request execution

 ○ Optimizing the time of the request execution if it will get the same response from the
cloud service because it no longer needs to be passed to the cloud service again with its
complex query

Doubt state counted as the most significant one that marks the request as doubt request to
inform the user to contact the responsible one in order to ensure the request state to prevent
its significant duplication

Reliable Web Service Consumption Through Mobile Cloud Computing
http://dx.doi.org/10.5772/intechopen.74461

65

Table 1 contains the following states:

• Reachable: available through Internet access.

• Server Error: The service responds with an internal server error.

• Timed Out: The Service execution takes more time than that allowed for the consumer to
get the response.

4. Reliable approach using middleware and WebSocket (RAMWS)

This section describes the proposed architecture RAMWS. In this section the proposed archi-
tecture is presented and how it is used to achieve the reliable web service consumption in
terms of overcoming the timeout problem. It achieves the immediate notification with the
appropriate response once it is available to the user.

Figure 5. Enhanced architecture process.

Mobile state Middleware state Cloud service state Case number

Reachable Reachable Reachable 1

Reachable Reachable Non-reachable 2

Reachable Reachable Server error 3

Reachable Non-reachable/server error Any 4

Non-reachable Any Any 5

Timed out Reachable Reachable 6

Table 1. The covered state summary of enhanced middleware architecture.

Mobile Computing - Technology and Applications66

The enhanced approach depends on the integration between the middleware approach and
the WebSocket protocol. This integration enables the middleware to always represent the cli-
ent with its arguments while consuming the required web service and enables the WebSocket
to represent the open connection protocol between the server and the client.

4.1. RAMWS architecture

The proposed approach is based on the architecture that was shown in Figure 6, which con-

tains three main components:

1. Integrated socket cloud service consumer (SCSC) is a mobile client middleware compo-

nent responsible for:

• Constructing the request with its appropriate attributes to send it to the integrated sock-

et middleware service component (SMSC) layer

• Handling the request communication cycle between the client and the SMSC

• Managing the client side WebSocket communication with the SMSC

Figure 6. RAMWS architecture and the communication process between its components.

Reliable Web Service Consumption Through Mobile Cloud Computing
http://dx.doi.org/10.5772/intechopen.74461

67

• Receiving the response and notifying the client with the appropriate result based on the
service response and the WebSocket data connection

2. Integrated socket middleware service component (SMSC) is a cloud service middleware
component responsible for:

• Receiving the request from the integrated socket client service consumer (SCSC) and
constructing the appropriate response regarding the sent request attributes

• Consuming the required cloud service to get the requested response

• Managing the server side WebSocket communication with the SCSC layer

• Handling two-way response to the SCSC, such that short time response to the client
request with an appropriate state and actual response through WebSocket connection
contain the expected result from the cloud service when available

3. WebSocket protocol is a standard communication way for the server to send content to the
client without being solicited by the client. It plays the most important role to overcome the
request timeout problem, such that it allows messages to be passed back and forth while
keeping the connection open during the service communication time, and it is responsible for:

• Achieving the other way of communication between the SCSC and the SMSC besides
the required REST service communication

• Sending the actual response to the SCSC once this response returned from the cloud
service

4.2. RAMWS protocol

The RAMWS architecture achieves reliability for the heavy cloud service while overcoming
the timeout issue.

The architecture process sequence shown in Figure 7 shows different experiences in mobile
applications to prevent the heavy services from the timeout response, such that it mainly
depends on two different responses: temporary response for the request and actual response
through the socket connection.

The RAMWS protocol contains the following:

1. The request additional attributes: They are attributes that control some important behav-

iors in the service consumption process, such as:

a. request_id: Identifies the request, to distinguish the responses returned through the Web-

Socket connection from multiple requests.

b. temporary_response_type: The temporary response is the returned response to be shown
in the mobile device till the actual response returns from the cloud service. There are some
of the defined types that control the suitable temporary responses for each service, such as
latest_cached_response, waiting_message, and limited_cached_response.

Mobile Computing - Technology and Applications68

c. socket_enabled: The is a flag attribute, which flags if this service is heavy and requires this
proposed approach, or it is light enough to get the response within the defined timeout
without additional overhead

5. Implementation and results

This section is the implemented part of the chapter; it converts that research trial from archi-
tecture to implemented framework and shows the used environment setup. The mentioned
proposed architectures are applied in the following proof-of-concept case, such that a social
network mobile application called “Social Contacts” allows the user to send a message to
his/her mobile contacts and show customized messages regularly during the whole day.

5.1. Social contacts application

This application includes the combination of the different request types and different amounts
of data flow as shown in Table 2 and will be clarified below.

The social contacts modules included in this use case are shown in Figure 8.

1. Cloud services modules.

• Authentication module: Allows the user to login to an existed account or register a new
account.

• Feeds module: Shows the user the frequently post feeds from his contacts and allows the
user to send a new post to the contacts.

2. Middleware module:

• Request states module: This is a middleware-related module that gains the benefits from the
enhanced architecture and introduces a new mobile user experience to the sort of reliable appli-
cations, such that it contains all sent requests states to presented and be clear to the user action.

Figure 7. RAMWS protocol sequence.

Reliable Web Service Consumption Through Mobile Cloud Computing
http://dx.doi.org/10.5772/intechopen.74461

69

Module Function

name

Flow Request

type

Data size Forced

attribute

Authentication module Login • The user enters his phone
number and chosen password

• If the user authorized, the
cloud service gets the saved
user account to the mobile
response; otherwise an error
response is sent to the mobile
client

Get Small (only
phone
number and
password)

Yes

Register • The user enters his phone
number and chosen password

• The application takes the
permission to read the contacts
info and sends them to the
server

• If the user doesn’t exist, the
cloud service posts and inserts
the user account with its
related contacts into database;
otherwise an error response is
sent to the mobile client

Post Medium
(phone
number,
password,
and all contact
numbers)

No

Feeds module Send Post • The user enters/choses his/her
contact phone number to send
the post to

• The user writes his post text

• The cloud service adds this
post in the database related
with the sent contact

Post Small- large
(regarding the
post content
size)

No

Delete Post • The user choses to delete any
post that appears in his/her
posts

• The cloud service deletes this
post from the database

Delete Small (the
post id)

No

Get Posts

Feed

• The user opens or refreshes
the screen to show the posts
that are sent from and to him

• The cloud service gets all the
related posts to this user

Get Medium-large
(regarding
the number
of returned
posts)

No

Get Posts

Feed Timeout

• The same functionalities as Get
Posts Feed, but it does heavy
computations and enlarge
the response to consume a
lot of time to make a timeout
response

Get Very large
response

No

Mobile Computing - Technology and Applications70

5.2. Environment setup

The working environment of the programming languages and the tools that are used in build-

ing these enhanced architectures are explained as follows in Table 3.

The following notes regarding making the architecture as a standalone solution:

• The S/CSC is built as an independent and separate android library.

• The middleware and backend components are deployed in a separate cloud instance than
the other. This ensures that middleware remains available in the case of any down issues
that occur in the backend cloud instance.

Module Function

name

Flow Request

type

Data size Forced

attribute

[Middleware

component]—request

states module

Show

Requests

• The user opens or refreshes the screen to show the requests states and
the request details sent from him using any of his/her mobile devices

• The middleware service gets all the related requests with their exact
states to this user

Retry Request • The user chooses to retry the execution of specific failed request

The middleware service posts the request in its reliable corresponding
scenario

Delete

Request

• The user chooses to delete any of his/her sent requests

The middleware service deletes this request from the database, in order not
to be shown or retried from the user another time

Table 2. Social contact application functions.

Figure 8. Social contacts modules.

Reliable Web Service Consumption Through Mobile Cloud Computing
http://dx.doi.org/10.5772/intechopen.74461

71

5.3. Result assessment

The proposed middleware architecture handles the effective cases that covered the correspond-

ing reliability concept. Moreover, the performance comparison will be considered to ensure the
usability and discuss the trade-off factors related to the middleware approach. The following
factors are considered as the most affective factors regarding the mobile computing scale:

• Request size: The size of the request body that constructs and sends in the mobile client; it
will be affected because of the additional attributes necessarily added for the middleware
to ensure the reliable request.

• Response size: The size of the response body that it is received in the mobile client; it will
not vary because there are no additional properties that need to be added from the middle-

ware for any reason.

• Consuming time: The time taken from sending the request till receiving its response may
be longer because of the additional middleware connection rather than the direct cloud
service connection.

5.3.1. RSAM results

Regarding the social contact application functions, Table 4 and Figures 7–11 show the per-

formance measurements through middleware component and through direct cloud service
connection.

The measurements indicate the middleware component cost performance. Regarding the
request size factor, the middleware adds additional 226 bytes to the request. These bytes
used for the required attributes discussed in its description section. Although this number of

Cloud services and middleware service component

Language and frameworks Web service Web socket Mobile agent Database and

text format

Java enterprise edition and
hibernate framework [13]

RESTFul
(JAX-RS)

Java API for
WebSocket (JSR 356)
[14]

Java Agent Development
Framework (JADE) [15]

MySQL [16]

and JSON [17]

Cloud service consumer (client)

Platform Response caching Web socket Text format

Android File system Java WebSocket Client [18] JSON [17]

Service deployment

Cloud service provider Application server

Openshift Cloud [19] for both middleware
and backend each on separate instance

Glassfish application server [20]

Table 3. Environment setup.

Mobile Computing - Technology and Applications72

 additional bytes in the request is considered a cost to the mobile client, this cost is low, and its
complexity is O(1) as it is constant regardless the original request size.

The response size is the factor that is not changed, as shown in Table 4, response size columns.
The middleware forwards the response exactly as returned from the cloud service. Therefore,
we avoid using transformation overhead and additional cost from the middleware or the
mobile client.

The consuming time is one of the most important factors for the mobile applications, which
require quick responses. The measurements show that time may slightly vary about 2 s in

Direct cloud connection Middleware connection

Module Function name Request

size (byte)

Response

size (byte)

Consuming

time (s)

Request

size (byte)

Response

size

(byte)

Consuming

time (s)

Authentication

module

Login Success 55 5 > 0 281 5 > 0

Failure 53 315 > 0 279 315 > 0

Feeds module Send Post 20217

(~20K)
3072 (~3
kB)

1 20443

(~20.5K)
3072

(~3kB)
1

Get Posts Feed 25 191745
(~191kB)

2 251 191745
(~191kB)

2

25 2167000

(~2MB)
21–26 251 2167000

(~2MB)
22–28

25 4592949
(~4.5MB)

44 251 4592949
(~4.5MB)

44

25 6828571
(~7MB)

65–66 251 6828571
(~7MB)

65–67

Direct cloud service results timeout in each time in the large response size with heavy required computations; the
middleware connection results timeout for the first time but returns the response successfully from the middleware
storage in the next retry.

Table 4. Social contact application performance measurements.

Figure 9. Request size factor of different services regarding the direct cloud and the middleware connection.

Reliable Web Service Consumption Through Mobile Cloud Computing
http://dx.doi.org/10.5772/intechopen.74461

73

the medium response size (~2 MB) data class and the very large response (~7 MB) data class.
However, it is exactly the same in the other cases without any overhead due to the middleware
connection. This is because the middleware uses lightweight connections and lightweight
data formats. In addition to its concerns with the request and response states resolving, the
middleware does the minimal efforts in data transformation and data conversion.

5.3.2. RAMWS results

The proposed approach overcomes the timeout problem that threats the cloud service reli-
ability. The two main concepts used to achieve this objective are middleware and the two-
response technique. Each of them participates in solving the problem and has some aspects in
the other side to be measured and compared with their responsibilities.

As shown in the above sections, the middleware achieves the availability and reliability in
responding to the mobile client with the appropriate actions and data. From the cost perspec-
tive, it requires extra resources for this middleware handling and deployment, such that it is
deployed in an application server, which is located in another cloud instance.

Regarding the two-response technique, it is managed by the middleware using two differ-
ent protocols: the HTTP REST protocol and the WebSocket protocol, respectively. The first

Figure 10. Response size of different services regarding the direct cloud and the middleware connection.

Figure 11. Consuming time for different services regarding the direct cloud and the middleware connection.

Mobile Computing - Technology and Applications74

response is a temporary one that enhances the mobile experience by showing appropriate
results to the user. After that, in the second response, the user receives the actual results on
time through the WebSocket open connection. This technique costs an extra data communica-

tion because of the temporary response that is transferred using the REST response. Figure 12

shows this cost regarding the different temporary response types. The waiting message
response type (waiting_message) is the minimum data required to transfer simple message
to the mobile client and has constant response size. The limited cached response type (lim-

ited_cached_response) sends limited size from the previously cached responses and has
small variable response size relative to the size of the single object of data required. The latest
cached response type (latest_cached_response) is the latest cached response in the middle-

ware and has a size that is identical to the actual response size of the whole required data.
Figure 13 shows the network consumption difference between the proposed technique and
the traditional one, such that the traditional technique consumes the network resource about
2–7 times depending on the network strength and the response size, compared with the pro-

posed technique that uses the network resource without waiting time.

Figure 12. Different temporary response data size with its types compared with the original actual response size.

Figure 13. Network usage time for consuming three different services regarding the traditional and the proposed
techniques.

Reliable Web Service Consumption Through Mobile Cloud Computing
http://dx.doi.org/10.5772/intechopen.74461

75

6. Conclusion

In this chapter, we proposed and discussed two middleware-based approaches that achieve
reliable web services through mobile cloud computing. These approaches focus on ensuring
the service request execution under the different mobile environment conditions including
intermittent connectivity and service unavailability conditions. Moreover, it ensures return-
ing the appropriate response according to the request state.

The proposed Reliable Service Architecture using Middleware (RSAM) achieves the reliabil-
ity by focusing on the request behavior rather than the request structure.

The RSAM focuses on ensuring the request execution and preventing the duplicate request
execution as a result of the intermittent mobile connection. In addition, they consider the
most important factors for the mobile client such as the request size and the response size for
mobile client data transmission limitations and the service consuming time, which is critical
for the mobile applications and their usability.

The service response size, database query time, and the required computations in the services
are continuously increasing corresponding to the application usage, which causes timeout dur-
ing the consumption of these cloud services. The timeout problem degrades the mobile usage
experience and waste network usage time and threats the cloud service reliability. This problem
requires restructuring the cloud service itself or the database schema to overcome such problem.

The RSAM solves this issue in the perspective of getting the response, such that the timeout
problem occurs in the first consumption, but it retrieves the ready stored response in the
middleware storage in the next retry. The proposed Reliable Approach using Middleware
and WebSocket (RAMWS) achieves the web service consumption reliability in the aspect of
overcoming the timeout problem. The RAMWS integrates the middleware approach and
the two-response technique to achieve the cloud service consumption reliability. The two-
response technique is used between the mobile client and the middleware, such that the first
response is temporary and shows the appropriate results to the user till the actual results are
received on time. The actual response is retrieved through WebSocket open connection once
it is fetched using middleware service.

The proposed approach proved to overcome the timeout problem, which occurs in requests
through mobile cloud computing, reduces the network usage time, and enhances the mobile
experience to be more usable.

Author details

Amr S. Abdelfattah*, Tamer Abdelkader and EI-Sayed M. EI-Horbaty

*Address all correspondence to: amr.elsayed@cis.asu.edu.eg

Faculty of Computer and Information Sciences, Ain-Shams University, Cairo, Egypt

Mobile Computing - Technology and Applications76

References

[1] Lomotey Richard K, Deters R. Reliable consumption of web services in a mobile-cloud
ecosystem using REST. In: IEEE 7th International Symposium of Service Oriented
System Engineering (SOSE); 2013. pp. 13-24

[2] Christensen JH. Using RESTful web-services and cloud computing to create next gen-

eration mobile applications. In: 24th ACM SIGPLAN Conference Companion Object
Oriented Program; 2009. pp. 627-634

[3] O'Sullivan MJ, Grigoras D. Delivering mobile cloud services to the user: Description,
discovery, and consumption. In: IEEE International Conference on Mobile Services
(MS); USA. IEEE; 2015. pp. 49-56. DOI: 10.1109/MobServ.2015.17

[4] W3C Working Group. Web Services Architecture [Internet]. February 2004. Available
from: http://www.w3.org/TR/ws-arch [Accessed: November 2017]

[5] Cobârzan A. Consuming web services on mobile platforms. Informatica Economica. 2010;
14(3):98-105

[6] Chen M, Zhang D, Zhou L. Providing web services to mobile users: The architecture
design of an m-service portal. International Journal of Mobile Communications. 2005;
3(1):1-18

[7] McFaddin S, et al. Modeling and managing mobile commerce spaces using RESTful data
services. In: 9th International Conference on Mobile Data Management, MDM'08; IEEE.
2008. pp. 81-89

[8] Kleimola J. A RESTful Interface to a Mobile Phone [Internet]. January 2008. Available
from: http://www.researchgate.net/publication/228974867_A_RESTful_Interface_to_a_
Mobile_Phone [Accessed: November 2017]

[9] Gonsai AM, Rushi RR. Enhance the interaction between mobile users and web services
using cloud computing. Oriental Journal of Computer Science & Technology. 2014;
7(3):416-424

[10] Yasumoto K, Yamaguchi H, Shigeno H. Survey of real-time processing technologies of
iot data streams. Journal of Information Processing. 2016;24(2):195-202

[11] He Y, Salih OS, Wang C-X, Yuan D. Deterministic process-based generative models
for characterizing packet-level bursty error sequences. Wireless Communications and
Mobile Computing. 2013;15(3):421-430

[12] Amr S, Abdelfattah TA, EI-Horbaty EI-SM. RSAM: An enhanced architecture for achiev-

ing web services reliability in mobile cloud computing. Journal of King Saud University—
Computer and Information Sciences. 2017:1-11. DOI: 10.1016/j.jksuci.2017.03

[13] Redhat. Hibernate Framework [Internet]. Available from: http://hibernate.org [Accessed:
November 2017]

Reliable Web Service Consumption Through Mobile Cloud Computing
http://dx.doi.org/10.5772/intechopen.74461

77

[14] Oracle. JavaTM API for WebSocket [Internet]. Available from: https://jcp.org/en/jsr/
detail?id=356 [Accessed: November 2017]

[15] Jade (Telecom Italia SpA). JAVA Agent Development Framework [Internet]. Available
from: http://jade.tilab.com [Accessed: November 2017]

[16] Oracle. MySQL Documentation [Internet]. Available from: https://www.mysql.com
[Accessed: November 2017]

[17] JSON Data format [Internet]. Available from: http://www.json.org [Accessed: November
2017]

[18] Java WebSocket [Internet]. Available from: org.java-websocket: Java-WebSocket [Accessed:
October 2016]

[19] Redhat. OpenShift Cloud Provider [Internet]. Available from: https://www.openshift.
com [Accessed: November 2017]

[20] Oracle. GlassFish Java Server [Internet]. Available from: https://glassfish.java.net [Accessed:
November 2017]

Mobile Computing - Technology and Applications78

