182 research outputs found

    Singlet exciton fission in solution.

    Get PDF
    Singlet exciton fission, the spin-conserving process that produces two triplet excited states from one photoexcited singlet state, is a means to circumvent the Shockley-Queisser limit in single-junction solar cells. Although the process through which singlet fission occurs is not well characterized, some local order is thought to be necessary for intermolecular coupling. Here, we report a triplet yield of 200% and triplet formation rates approaching the diffusion limit in solutions of bis(triisopropylsilylethynyl (TIPS)) pentacene. We observe a transient bound excimer intermediate, formed by the collision of one photoexcited and one ground-state TIPS-pentacene molecule. The intermediate breaks up when the two triplets separate to each TIPS-pentacene molecule. This efficient system is a model for future singlet-fission materials and for disordered device components that produce cascades of excited states from sunlight.B.J.W. was supported by a Herchel Smith Research Fellowship. A.J.M. received funding from a Marie Curie Scholarship. D.B. is a FNRS Research Director. Both A.J.M and D.B. acknowledge support from the European Community’s Initial Training Network SUPERIOR (PITN-GA-2009-238177). Further funding for this project came from the Engineering and Physical Sciences Research Council (EPSRC) and a pump-prime grant from the Winton Programme for the Physics of Sustainability.This is the accepted version of an article originally published in Nature Chemistry 5, 1019–1024 and available online at http://www.nature.com/nchem/journal/v5/n12/full/nchem.1801.html. Nature Publishing Group's conditions for reuse are detailed at http://www.nature.com/authors/policies/license.html

    Automatic medical encoding with SNOMED categories

    Get PDF
    BACKGROUND: In this paper, we describe the design and preliminary evaluation of a new type of tools to speed up the encoding of episodes of care using the SNOMED CT terminology. METHODS: The proposed system can be used either as a search tool to browse the terminology or as a categorization tool to support automatic annotation of textual contents with SNOMED concepts. The general strategy is similar for both tools and is based on the fusion of two complementary retrieval strategies with thesaural resources. The first classification module uses a traditional vector-space retrieval engine which has been fine-tuned for the task, while the second classifier is based on regular variations of the term list. For evaluating the system, we use a sample of MEDLINE. SNOMED CT categories have been restricted to Medical Subject Headings (MeSH) using the SNOMED-MeSH mapping provided by the UMLS (version 2006). RESULTS: Consistent with previous investigations applied on biomedical terminologies, our results show that performances of the hybrid system are significantly improved as compared to each single module. For top returned concepts, a precision at high ranks (P0) of more than 80% is observed. In addition, a manual and qualitative evaluation on a dozen of MEDLINE abstracts suggests that SNOMED CT could represent an improvement compared to existing medical terminologies such as MeSH. CONCLUSION: Although the precision of the SNOMED categorizer seems sufficient to help professional encoders, it is concluded that clinical benchmarks as well as usability studies are needed to assess the impact of our SNOMED encoding method in real settings. AVAILABILITIES : The system is available for research purposes on: http://eagl.unige.ch/SNOCat

    Theoretical Studies of Spectroscopy and Dynamics of Hydrated Electrons.

    Get PDF

    MuPix and ATLASPix -- Architectures and Results

    Full text link
    High Voltage Monolithic Active Pixel Sensors (HV-MAPS) are based on a commercial High Voltage CMOS process and collect charge by drift inside a reversely biased diode. HV-MAPS represent a promising technology for future pixel tracking detectors. Two recent developments are presented. The MuPix has a continuous readout and is being developed for the Mu3e experiment whereas the ATLASPix is being developed for LHC applications with a triggered readout. Both variants have a fully monolithic design including state machines, clock circuitries and serial drivers. Several prototypes and design variants were characterised in the lab and in testbeam campaigns to measure efficiencies, noise, time resolution and radiation tolerance. Results from recent MuPix and ATLASPix prototypes are presented and prospects for future improvements are discussed.Comment: 10 pages, proceedings, The 28th International Workshop on Vertex Detectors (VERTEX 2019), 13 - 18 Oct 2019, Lopud Island, Croati

    Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy.

    Get PDF
    Singlet fission is the spin-allowed conversion of a spin-singlet exciton into a pair of spin-triplet excitons residing on neighbouring molecules. To rationalize this phenomenon, a multiexcitonic spin-zero triplet-pair state has been hypothesized as an intermediate in singlet fission. However, the nature of the intermediate states and the underlying mechanism of ultrafast fission have not been elucidated experimentally. Here, we study a series of pentacene derivatives using ultrafast two-dimensional electronic spectroscopy and unravel the origin of the states involved in fission. Our data reveal the crucial role of vibrational degrees of freedom coupled to electronic excitations that facilitate the mixing of multiexcitonic states with singlet excitons. The resulting manifold of vibronic states drives sub-100 fs fission with unity efficiency. Our results provide a framework for understanding singlet fission and show how the formation of vibronic manifolds with a high density of states facilitates fast and efficient electronic processes in molecular systems.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nchem.237

    Основные подходы к разработке проекта рекультивации месторождения бокситов «Белинское»

    Get PDF
    © 2017 American Speech-Language-Hearing Association. Purpose: The aim was to evaluate the effectiveness of computer-assisted input-based intervention for children with speech sound disorders (SSD). Method: The Sound Start Study was a cluster-randomized controlled trial. Seventy-nine early childhood centers were invited to participate, 45 were recruited, and 1,205 parents and educators of 4- and 5-year-old children returned questionnaires. Children whose parents and educators had concerns about speech were assessed (n =275); 132 children who were identified with phonological patternbased errors underwent additional assessment. Children with SSD and no difficulties with receptive language or hearing, typical nonverbal intelligence, and English as their primary language were eligible; 123 were randomized into two groups (intervention n = 65; control n = 58), and 3 withdrew. The intervention group involved Phoneme Factory Sound Sorter software (Wren & Roulstone, 2013) administered by educators over 9 weeks; the control group involved typical classroom practices. Participants were reassessed twice by a speech-language pathologist who was unaware of the initial assessment and intervention conditions. Results: For the primary outcome variable (percentage of consonants correct), the significant mean change from pre- to postintervention for the intervention group (mean change = +6.15,

    The Protein-Protein Interaction tasks of BioCreative III: classification/ranking of articles and linking bio-ontology concepts to full text

    Get PDF
    BACKGROUND: Determining usefulness of biomedical text mining systems requires realistic task definition and data selection criteria without artificial constraints, measuring performance aspects that go beyond traditional metrics. The BioCreative III Protein-Protein Interaction (PPI) tasks were motivated by such considerations, trying to address aspects including how the end user would oversee the generated output, for instance by providing ranked results, textual evidence for human interpretation or measuring time savings by using automated systems. Detecting articles describing complex biological events like PPIs was addressed in the Article Classification Task (ACT), where participants were asked to implement tools for detecting PPI-describing abstracts. Therefore the BCIII-ACT corpus was provided, which includes a training, development and test set of over 12,000 PPI relevant and non-relevant PubMed abstracts labeled manually by domain experts and recording also the human classification times. The Interaction Method Task (IMT) went beyond abstracts and required mining for associations between more than 3,500 full text articles and interaction detection method ontology concepts that had been applied to detect the PPIs reported in them.RESULTS:A total of 11 teams participated in at least one of the two PPI tasks (10 in ACT and 8 in the IMT) and a total of 62 persons were involved either as participants or in preparing data sets/evaluating these tasks. Per task, each team was allowed to submit five runs offline and another five online via the BioCreative Meta-Server. From the 52 runs submitted for the ACT, the highest Matthew's Correlation Coefficient (MCC) score measured was 0.55 at an accuracy of 89 and the best AUC iP/R was 68. Most ACT teams explored machine learning methods, some of them also used lexical resources like MeSH terms, PSI-MI concepts or particular lists of verbs and nouns, some integrated NER approaches. For the IMT, a total of 42 runs were evaluated by comparing systems against manually generated annotations done by curators from the BioGRID and MINT databases. The highest AUC iP/R achieved by any run was 53, the best MCC score 0.55. In case of competitive systems with an acceptable recall (above 35) the macro-averaged precision ranged between 50 and 80, with a maximum F-Score of 55. CONCLUSIONS: The results of the ACT task of BioCreative III indicate that classification of large unbalanced article collections reflecting the real class imbalance is still challenging. Nevertheless, text-mining tools that report ranked lists of relevant articles for manual selection can potentially reduce the time needed to identify half of the relevant articles to less than 1/4 of the time when compared to unranked results. Detecting associations between full text articles and interaction detection method PSI-MI terms (IMT) is more difficult than might be anticipated. This is due to the variability of method term mentions, errors resulting from pre-processing of articles provided as PDF files, and the heterogeneity and different granularity of method term concepts encountered in the ontology. However, combining the sophisticated techniques developed by the participants with supporting evidence strings derived from the articles for human interpretation could result in practical modules for biological annotation workflows

    Technical design of the phase I Mu3e experiment

    Get PDF
    The Mu3e experiment aims to find or exclude the lepton flavour violating decay μ→eee at branching fractions above 10−16. A first phase of the experiment using an existing beamline at the Paul Scherrer Institute (PSI) is designed to reach a single event sensitivity of 2⋅10−15. We present an overview of all aspects of the technical design and expected performance of the phase I Mu3e detector. The high rate of up to 108 muon decays per second and the low momenta of the decay electrons and positrons pose a unique set of challenges, which we tackle using an ultra thin tracking detector based on high-voltage monolithic active pixel sensors combined with scintillating fibres and tiles for precise timing measurements

    Technical design of the phase I Mu3e experiment

    Get PDF
    The Mu3e experiment aims to find or exclude the lepton flavour violating decay μeee\mu \rightarrow eee at branching fractions above 101610^{-16}. A first phase of the experiment using an existing beamline at the Paul Scherrer Institute (PSI) is designed to reach a single event sensitivity of 210152\cdot 10^{-15}. We present an overview of all aspects of the technical design and expected performance of the phase~I Mu3e detector. The high rate of up to 10810^{8} muon decays per second and the low momenta of the decay electrons and positrons pose a unique set of challenges, which we tackle using an ultra thin tracking detector based on high-voltage monolithic active pixel sensors combined with scintillating fibres and tiles for precise timing measurements.Comment: 114 pages, 185 figures. Submitted to Nuclear Instruments and Methods A. Edited by Frank Meier Aeschbacher This version has many enhancements for better readability and more detail
    corecore