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Singlet exciton fission, the spin-conserving process that produces two spin triplet excited 

states from one photoexcited singlet state, is a means to circumvent the Shockley-

Queisser limit in single-junction solar cells. While the process through which singlet 

fission occurs is not well-characterised, some local order is thought to be necessary for 

intermolecular coupling. Here, we report 200% triplet yield and triplet formation rates 

approaching the diffusion limit in solutions of TIPS-pentacene. We observe a transient 

bound excimer intermediate, formed by collision of one photoexcited, and one ground 

state TIPS-pentacene molecule. The intermediate breaks up when the two triplets have 

separated to each TIPS-pentacene molecule. This efficient system is a model for future 

singlet fission materials and for disordered device components that produce cascades of 

excited states from sunlight. 

First proposed to account for the optical and magnetic properties of crystalline 

anthracene1 and tetracene2,3, singlet exciton fission4,5 is the reverse process of triplet-triplet 

annihilation6. In singlet exciton fission, a singlet excited state decays to form two triplet 

excitons on neighbouring molecules. Because the two product triplets have a net spin of zero, 

the singlet fission process conserves spin and is thus a faster means to generate triplets than 



intersystem crossing for organic chromophores7. When the fission process is exergonic8 this 

process can be rapid and efficient, as is now established for solid films of pentacene9,10. 

Singlet fission has gained interest as a means to circumvent the Shockley-Queisser limit in 

solar cells11. Because singlet fission converts high-energy photons into two excitons, a singlet 

fission sensitiser can be used with a low band gap solar cell to reduce losses due to relaxation. 

For such a single-junction cell the maximum theoretical efficiency increases to 44%12, and 

this potential has led to recent realisations of singlet fission-sensitised solar cells13,14. 

Some basic aspects of the singlet fission mechanism remain unresolved. Although the 

energetic requirements for singlet fission are satisfied in a range of materials, experiments 

have shown that this is not the only criterion for efficient singlet fission15. While the nature of 

singlet fission suggests that the process requires exciton coupling16–21, the observation of 

fission in amorphous solids22 indicates that long-range order is not required. Singlet fission 

occurs for tetracene in both single crystals7 and polycrystalline films23, but the triplet 

population is also controlled by processes such as diffusion and annihilation that complicate 

analysis24. While molecular solids are practical for devices, they give little insight into the 

short-range molecular interactions that govern singlet fission. 

To address these questions, we investigated the molecular mechanism of singlet 

fission in solutions of TIPS-pentacene (Fig. 1a). Originally developed for use in field effect 

transistors25, TIPS-pentacene (Fig. 1b) has two triisopropylsilylethynyl (TIPS) groups that 

lead to favourable intermolecular orientations and high hole mobilities in the solid state26. 

The substituents also render TIPS-pentacene far more soluble than unsubstituted  pentacene27, 

allowing our solutions to reach concentrations of 3.1% by mass (0.075 mol/L) in chloroform 

before saturation. 

 



Results and Discussion 

The absorption spectrum of dilute TIPS-pentacene solution is shown in Fig. 1c. For 

comparison, we also took the absorption spectrum of a solid-state film of TIPS-pentacene. 

Whether the film is produced through spin or drop-casting, the solid-state absorption 

spectrum has a red-shifted aggregate feature that is not present in solution. We took 

absorption spectra of solutions across several orders of magnitude in TIPS-pentacene 

concentration (Supplementary Fig. S1), and we observed no significant aggregates even in 

samples near the saturation point. We conclude that TIPS-pentacene molecules in solution are 

electronically decoupled in the ground state, even at high concentration. In a control 

experiment, we investigated the TIPS-pentacene solutions at different concentrations using 

diffusion-ordered nuclear magnetic resonance spectroscopy (DOSY). These spectra show that 

the diffusion constant of TIPS-pentacene (9.7 x 10-10 m2/s) is unchanged across the series, 

indicating that the motion of TIPS-pentacene molecules is identical for concentrations from 

10-5 mol/L to 0.075 mol/L (Supplementary Fig. S2). 

 

Quantitative singlet fission yield 

We probed the excited state dynamics of TIPS-pentacene solutions using transient 

absorption spectroscopy. This pump-probe technique is a popular means of studying 

photophysics, due to its versatile time resolution and its ease of comparison with ground-state 

absorption spectra28. In transient absorption, a short pulse of light at a well-defined energy 

(the “pump”) excites the sample, and after a time delay ranging from femtoseconds to 

hundreds of microseconds, a pulse broad in energy but short in time (the “probe”) 

interrogates the same spot. The transmitted light from the probe is compared with and 

without the pump light, and resolved by both spectral wavelength and delay time. If there is a 



change in the spectrum of the probe due to bleaching of the ground state transitions (“ground 

state bleach”), stimulated emission, or excited-state absorption from one excited state to 

another, then these will manifest as a change in the transmittance of the probe, ΔT. We report 

the signal normalised by the ground state transmittance, ΔT/T, to facilitate comparison across 

experimental configurations. 

We show a transient absorption spectrum for a dilute TIPS-pentacene solution 

(10-4 mol/L) in Fig. 2a. The electronic delay enables measurements from 10-9 – 10-3 s, 

although the initial signals are broadened by the temporal distribution of photons in the 

excitation pulse. Across the spectral range from 0.77 to 2.39 eV, the dynamics are dominated 

by features with a lifetime of 13 ns. Specifically, we observe a ground state bleach at 1.9 eV, 

analogous to the 0-0 band of the ground state absorption spectrum. There are also various 

excited state absorptions due to transitions to higher lying excited states (see Supplementary 

Figs. S3 and S4 for TA data above 2.3 eV). A spectral cross section at the peak of the signal 

intensity (2.6 ns) is shown in Fig. 2b, and because the lifetime correlates with the singlet 

lifetime measured during time-resolved photoluminescence spectroscopy (see below) it is 

identified as the TA spectrum of singlets, 1TP*. 

The transient absorption spectrum of concentrated TIPS-pentacene solution 

(0.075 mol/L) is shown in Fig. 2c. In contrast to the absorption spectrum of ground state 

TIPS-pentacene (TP), there are major differences between TA spectra at low and high 

concentration of TIPS-pentacene. In the concentrated solution, there are negative features that 

correspond to excited-state absorptions. As these intense features have identically long 

lifetimes (6.5 μs), they are distinct from the singlets in Fig. 2c and are correlated with one 

another. The concentrated solutions also have an intense, long-lived excited state absorption 

feature at 2.44 eV (Supplementary Figs. S3 and S4), which has been assigned to the excited 

state absorption of triplets29. To confirm this assignment, we measured a dilute solution of 



TIPS-pentacene with the triplet sensitiser N-methylfulleropyrrolidine30, and the sensitiser and 

TIPS-pentacene spectra were deconvoluted using singular value decomposition. The resulting 

TIPS-pentacene spectrum, dominated by triplets, is shown in Fig. 2b together with the singlet 

spectrum described above. Notably, the triplet control spectrum has the three infrared features 

that match the concentrated TIPS-pentacene solution. As a result, we infer that the long-lived 

species in concentrated TIPS-pentacene solution is the triplet, 3TP*. 

Representative kinetic traces from concentrated TIPS-pentacene are shown in Fig. 3a. 

As in Fig. 2a the kinetics are convoluted with the temporal breadth of the excitation pulse, 

and during this pulse the dynamics of 1TP* and 3TP* resemble each other. The subsequent 

decay of 1TP* is matched by further rise in 3TP* until the singlets have fully decayed at 

11 ns. From 10 ns onward, the triplet does not rise further. The 3TP* excited state absorption 

is mirrored in the ground state bleach (Fig. S5), whose intensity approximately doubles in the 

interval from 2.6 ns to 10 ns. Because the ground state bleach arises from molecules in 

excited states, its continued increase demonstrates that additional TIPS-pentacene molecules 

are excited after the pump pulse has passed. Moreover, the bleach signals decay with a 

single-exponential lifetime of 6.5 μs, which closely resembles the 3TP* dynamics identified 

above. This correspondence indicates that after 10 ns the only excitations that remain on 

TIPS-pentacene are triplets. Together these observations suggest that efficient singlet fission 

occurs in concentrated TIPS-pentacene solutions. We attribute the delayed appearance of the 

feature at 1.65 eV to the presence of stimulated emission, and as this decays the underlying 

triplet becomes apparent. 

Because of the isotropic nature of TIPS-pentacene solutions and the absence of 

interferences in the infrared, we are able to determine the triplet yield (see Supplementary 

Section 4 for details). The key to this calculation is the relationship between singlet and 

triplet excited state absorption coefficients. For this isotropic solution, photoexcited TIPS-



pentacene molecules have the same measured ground state bleach whether they are 1TP* or 

3TP*. Conveniently, the ground state bleach feature associated with either triplets or singlets 

in the range 1.9-2.0 eV is well separated from other spectral responses, as seen in Fig. 2b. We 

can therefore normalise the 3TP* and 1TP* TA response in this spectral range, and thus 

determine both the triplet cross section and an absolute quantum yield of triplet formation. In 

concentrated solutions, the population difference between the triplet and singlet are apparent 

in Fig. 2c, as the intensity of the singlet and triplet infrared excited state absorptions are 

similar in spite of the two-fold difference in their cross sections. We find that the quantum 

yield of singlet fission for TIPS-pentacene at 0.075 mol/L is near unity, corresponding to a 

triplet yield of 197 ± 3%.  

Figure 3b shows triplet yield measured from TA spectra as a function of TIPS-

pentacene concentration. At high concentration, the rate of triplet formation reaches an upper 

limit of 2.2 x 109 L mol-1 s-1, which is within 30% of the diffusion limit for a bimolecular 

reaction in chloroform at room temperature31. This result is significant both because it is the 

maximum observable rate for such a solution, and also because any intermolecular coupling 

required for singlet fission must occur on a rapid time scale relative to collisions in solution. 

Figure 3b has an inflection point corresponding to a singlet fission probability of 50%, 

and the TIPS-pentacene concentration at that point is 7.9 x 10-3 mol/L. The concentration 

corresponds to a mean intermolecular separation of 7.4 nm between TIPS-pentacene 

molecules. Because singlet fission is limited in this system by the rate at which 1TP* and TP 

collide, this distance is thus the average diffusion length of TIPS-pentacene within the singlet 

lifetime. 

 

 



Triplet formation kinetics 

Ultrafast transient absorption spectra of TIPS-pentacene solutions are shown in Fig. 4. 

In the dilute sample (Fig. 4a, 10-4 mol/L), the pump pulse excites isolated TIPS-pentacene 

molecules. These decay on a long time scale consistent with the 13 ns apparent from Fig. 2a 

(with fitted functions in Supplementary Fig. S6). In the concentrated sample (Fig. 4b, 

0.075 mol/L), the pump pulse still generates TIPS-pentacene singlets, and the initial 

dynamics are similar to those in Fig. 4a. For instance, both samples exhibit minor spectral 

changes at early times associated with the solvent dielectric response. By 1000 ps, however, 

the concentrated sample is dominated by triplet excited state absorption features (1.28 eV and 

1.46 eV) similar to those in the long time measurements (Fig. 2c). These triplet features 

grow, and the singlet decays, with a characteristic time of 530 ps (Supplementary Fig. S7). 

This kinetic is equivalent to a triplet formation rate of 1.7 x 10-6 mol L-1 ps-1, with a 

bimolecular rate constant of 2.2 x 109 L mol-1 s-1 (see Supplementary Section 7 and 

Figure S8). This value is within a factor of 2 of the anticipated diffusion limit of TIPS-

pentacene molecules in chloroform at room temperature, and indicates that the reaction 

proceeds at its maximum possible rate in solution. 

The power-dependence of triplet formation is shown in Supplementary Fig. S9, and 

after normalising by fluence it is clear that the solution dynamics are linear with incident 

photon flux. This relationship agrees with the expected result for a sample that exhibits 

highly efficient singlet fission in the photon-limited kinetic regime, as each incremental 

increase in light intensity produces a proportionally greater number of triplets. 

 

 



Excimer intermediate 

Photoluminescence spectra of TIPS-pentacene (Fig. 5a) show a substantial change in 

lineshape as the concentration increases. While the dilute spectrum has features that mirror 

the absorption spectrum and a quantum yield of 75%, at high concentrations, the 

photoluminescence quantum yield decreases to < 1%, with a featureless spectrum red-shifted 

by 0.17 eV. Time-resolved measurements (Fig. 5b) indicate that the fluorescence lifetime of 

dilute TIPS-pentacene is 13 ns, and the lifetime of the most concentrated solution is 400 ps. 

We explored the concentration- and spectral-dependence of this shortened feature. At 

high concentrations, the shortened lifetime is constant across the lineshape 

(Supplementary Fig. S10). Although the emission is consistent with an optically allowed 

transition, the low photoluminescence quantum yield indicates that the excited state is 

quenched efficiently through a nonradiative pathway. The emission redshift at high 

concentration does not result from ground state aggregation of TP, as the absorption spectra 

and DOSY data indicate that the molecules remain dissociated and disordered in the ground 

state. At intermediate concentrations (Supplementary Fig. S11) however, there is a 

distribution of different lifetimes, which become progressively shorter as the emission energy 

decreases. Any self-absorption present in the sample would not produce these effects on the 

lifetime. Instead, the red-shifted feature arises from a distinct, stabilised interaction of 

molecules in the excited state, and we attribute the feature to a TIPS-pentacene excimer, 

1[TP − TP]*. The observed 400 ps excited state lifetime is a plausible estimate for the singlet 

fission process and is consistent to within 20% with the triplet formation rate above (Fig. 4b). 

Finally, although the lifetime of the emission is nearly constant across the lineshape at 

10-4 mol/L (Supplementary Fig. S12), at low emission energy (1.46 eV) there is evidence for 

both a fast process (attributed to a small fraction of molecules undergoing singlet fission) and 



a minor slow component. The slight presence of singlet fission in the dilute case further 

supports our diffusion-limited mechanism. 

Our experiments demonstrate singlet fission in TIPS-pentacene solution, which occurs 

as follows. After photoexcitation, 1TP* and TP collide, interacting at the maximum rate 

allowed by diffusion. They form a stabilised species 1[TP − TP]* that has the energy greater 

than or equal to the sum of two pentacene triplets32, exhibits weak excimer emission and 

decays rapidly through a single nonradiative pathway on a time scale of 400-530 ps. The 

excited state population increases after the initial excitation and reaches a maximum of two 

triplets for every initial singlet. 

 

Computational study of excimer structures 

The observed excimer redshift is a distinct feature of interacting TIPS-pentacene 

molecules. As a result, this parameter can be used with time-dependent density functional 

theory (TDDFT) calculations to investigate plausible structures of the 1[TP − TP]* state that 

precedes singlet fission. Using a range-separated33 functional (ωB97X-D), we computed the 

emission spectral redshift of a dimer of one TP and one 1TP*, relative to 1TP* alone. The 

starting point is the crystal geometry34 shown in Fig. 6a.  

We calculated the emission spectral redshift for varying displacements of TP and 

1TP* at fixed separation of 3.43 Å between planes. The results are shown in Fig. 6b, and the 

geometries in red regions show an emission red-shift comparable to experiment. Several test 

structures from this analysis are shown in Supplementary Fig. S14, with parameters in 

Supplementary Table S2. We also computed the emission spectral shift for systematic 



variations in the intermolecular separation and relative orientation of the molecules 

(Supplementary Figs. S15 and S16). 

Among the plausible structures from Fig. 6b, the greatest agreement with experiment 

arises from slip-stacked arrangements of parallel TIPS-pentacene molecules. This slip angle 

is more pronounced for the excimer than in the crystal, as the crystal geometry (at the origin 

of Fig. 6b) gives a smaller energetic stabilisation than we observe in solution. Though slip-

stacked geometries are implicated in J-type coupling between molecules and hypothesised to 

promote fission in some cases35,36, our experimental results demonstrate that the only 

geometrical constraint occurs for the excimer, not for molecules in the ground state. 

Our results provide some insight into two intermolecular interactions required for 

singlet fission. First, the initial encounter between 1TP* and TP in solution is very rapid, and 

the red-shifted emission from 1[TP − TP]* demonstrates that they are stabilised. Thus, there 

is a sufficient driving force for molecules in concentrated solutions to find one another within 

the singlet lifetime. Second, the long triplet lifetime of TIPS-pentacene in solution (6.5 μs) 

relative to pentacene37 or TIPS-pentacene films29 suggests that triplet-triplet annihilation is 

suppressed in solution. Both the first and second processes are hindered in the solid state and 

in covalent dimers38,39: the reduced freedom of molecules can prevent them from achieving 

the most favourable geometry for triplet formation, and any triplets that form remain close 

enough to annihilate. In dilute solutions, the intermolecular distance is too large for diffusing 

molecules to associate within the radiative lifetime.  

 

 

 



Conclusions 

The results of this study suggest a number of promising directions for future work. While our 

work supports a bimolecular mechanism for singlet fission in TIPS-pentacene solutions, it 

also connects to broader mechanistic questions. First, the observed excimer has the energy 

and multichromophoric character attributed to the state D proposed earlier17. The transient 

association and stabilisation of the TIPS-pentacene excited state energy has similarities with 

electronic perturbations observed in systems with very different electronic structures, such as 

polyenes40–43. As such, our work suggests that there is scope for universal theories of singlet 

fission that span many distinct families of chromophores4,44,45. 

Because we identified material design principles and a mechanistic pathway for 

understanding singlet fission, these findings will inspire the synthesis of the next generation 

of light-harvesting materials and allow the harvesting of energy that is typically lost to 

relaxation46. Beyond the facile processibility enabled by the use of a soluble material47, the ∼200% triplet yield in solution also suggests the use of TIPS-pentacene in a liquid 

photocatalytic cell based on singlet fission.  

In conclusion, we have demonstrated the complete fission of singlet excitons into two 

triplet excitons in solution. We have observed the distinct signature of an excimer 

intermediate to singlet fission, and our results lead to a molecular mechanism. From these 

results, we anticipate new singlet fission devices, new synthesis to promote intermolecular 

interactions, and new ultrafast studies on the interactions of disordered chromophores. 
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Figure 1 Overview of TIPS-pentacene. a, Scheme for the mechanism of singlet fission in 

TIPS-pentacene solution. One excited singlet molecule and one ground state molecule 

associate in the rate limiting step to form an excimer. This intermediate decays to two triplets. 

Blue arrows are reactions, red arrows are optical transitions. b, Structure of TIPS-pentacene. 

c, Ground-state absorption spectra of TIPS-pentacene dissolved in chloroform and as a spun-

cast film. Solid state TIPS-pentacene has an aggregate feature at 1.75 eV. 

 

Figure 2 Transient absorption spectra of TIPS-pentacene. a, TIPS-pentacene solution at 

10-4 mol/L. The dynamics are dominated by singlets and decay within 13 ns after peak of the 

excitation pulse (at 2.6 ns). b, Fixed-time spectrum of the TIPS-pentacene singlet excited 

state from (a) and of the triplet excited state from sensitisation experiments. The power-

independent excited state molar absorptivity was measured for the singlet, and the triplet was 

normalised to the singlet at 1.9-2.0 eV. c, TIPS-pentacene solution, 0.075 mol/L. In addition 

to singlet features there are long-lived signals due to triplets. The ground state bleach at 

1.9 eV has both a delayed increase and a decay that is attributable entirely to triplets, which 

constitutes direct evidence for complete singlet fission.  

 

Figure 3 Triplet yield in TIPS-pentacene solutions. a, Population dynamics of TIPS-

pentacene in solution, extracted from Fig. 2c at a solution concentration of 0.075 mol/L. 

Kinetics were sampled at 1.27-1.29 eV for triplets and 0.88-0.95 eV for singlets. The triplet 

population is referenced to the singlet through the excited state absorption coefficients from 

1.9-2.0 eV. Decay of the singlet population is matched by the triplet rise, and the triplet yield 

is 200%. b, Plot of triplet yield as a function of concentration. The quantum yield approaches 

unity at high concentration, resulting in a triplet yield of ∼200%. Error bars reflect 



measurements on multiple samples, and the mean intermolecular distance is shown for 

reference.  

 

Figure 4 Ultrafast transient absorption spectra of TIPS-pentacene with a time resolution of 

0.28 ps. Black lines at 1 ps indicate a change from linear to logarithmic timescale. a, TIPS-

pentacene solution at 10-4 mol/L. The spectrum is dominated by the singlet excited state 

absorption, which rises within the instrument response and exhibits solvent relaxation at early 

times. b, TIPS-pentacene solution at 0.075 mol/L. The initial excited population is again 

composed of singlets. Substantial triplet growth occurs from 100 ps as indicated by the 

absorptions at 1.27-1.29 eV and 1.44-1.47 eV, and is accompanied by accelerated singlet 

decay (1.30-1.42 eV).  

 

Figure 5 Photoluminescence of TIPS-pentacene solutions. a, Plot of the emission spectra as a 

function of concentration, normalised at 1.7 eV. The excimer emission at 1.7 eV becomes 

relatively more prominent at high concentrations. b, Time-resolved emission of dilute and 

concentrated TIPS-pentacene. Single-exponential fits give a lifetime of 13 ns for the dilute 

sample and 400 ps for the concentrated sample. Coloured bars in a indicate emission energies 

for each sample.  

 

Figure 6 Time-dependent density functional theory analysis of TIPS-pentacene excimer 

structures. a, Starting geometry for the TIPS-pentacene excimer from the solid-state crystal 

structure. Trasverse (T) and longitudinal (L) axes are indicated. b, Effect of π-stacking on the 

emission spectral redshift between the excimer and monomer structures, for parallel 



molecular planes separated by 3.43 Å. The crystal geometry is the origin. An emission 

redshift of 170 meV is observed, and regions coloured red are comparable to experiment. 
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Singlet exciton fission produces two triplet excited states from one excited singlet, through 

interchromophoric coupling which is thought to require local order. Here, we report 200% 

triplet yield and diffusion-limited triplet formation in solutions of TIPS-pentacene. Kinetic 

studies reveal an excimer intermediate and suggest design principles to promote singlet 

fission. 
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