62 research outputs found

    Yambo: an \textit{ab initio} tool for excited state calculations

    Full text link
    {\tt yambo} is an {\it ab initio} code for calculating quasiparticle energies and optical properties of electronic systems within the framework of many-body perturbation theory and time-dependent density functional theory. Quasiparticle energies are calculated within the GWGW approximation for the self-energy. Optical properties are evaluated either by solving the Bethe--Salpeter equation or by using the adiabatic local density approximation. {\tt yambo} is a plane-wave code that, although particularly suited for calculations of periodic bulk systems, has been applied to a large variety of physical systems. {\tt yambo} relies on efficient numerical techniques devised to treat systems with reduced dimensionality, or with a large number of degrees of freedom. The code has a user-friendly command-line based interface, flexible I/O procedures and is interfaced to several publicly available density functional ground-state codes.Comment: This paper describes the features of the Yambo code, whose source is available under the GPL license at www.yambo-code.or

    Tailored Interface Energetics for Efficient Charge Separation in Metal Oxide-Polymer Solar Cells.

    Get PDF
    Hybrid organic-inorganic heterointerfaces in solar cells suffer from inefficient charge separation yet the origin of performance limitations are widely unknown. In this work, we focus on the role of metal oxide-polymer interface energetics in a charge generation process. For this purpose, we present novel benzothiadiazole based thiophene oligomers that tailor the surface energetics of the inorganic acceptor TiO2 systematically. In a simple bilayer structure with the donor polymer poly(3-hexylthiophene) (P3HT), we are able to improve the charge generation process considerably. By means of an electronic characterization of solar cell devices in combination with ultrafast broadband transient absorption spectroscopy, we demonstrate that this remarkable improvement in performance originates from reduced recombination of localized charge transfer states. In this context, fundamental design rules for interlayers are revealed, which assist the charge separation at organic-inorganic interfaces. Beside acting as a physical spacer in between electrons and holes, interlayers should offer (1) a large energy offset to drive exciton dissociation, (2) a push-pull building block to reduce the Coulomb binding energy of charge transfer states and (3) an energy cascade to limit carrier back diffusion towards the interface

    Nanoparticle shape anisotropy and photoluminescence properties : Europium containing ZnO as a model case

    Get PDF
    The precise control over electronic and optical properties of semiconductor (SC) materials is pivotal for a number of important applications like in optoelectronics, photocatalysis or in medicine. It is well known that the incorporation of heteroelements (doping as a classical case) is a powerful method for adjusting and enhancing the functionality of semiconductors. Independent from that, there already has been a tremendous progress regarding the synthesis of differently sized and shaped SC nanoparticles, and quantum-size effects are well documented experimentally and theoretically. Whereas size and shape control of nanoparticles work fairly well for the pure compounds, the presence of a heteroelement is problematic because the impurities interfere strongly with bottom up approaches applied for the synthesis of such particles, and effects are even stronger, when the heteroelement is aimed to be incorporated into the target lattice for chemical doping. Therefore, realizing coincident shape control of nanoparticle colloids and their doping still pose major difficulties. Due to a special mechanism of the emulsion based synthesis method presented here, involving a gelation of emulsion droplets prior to crystallization of shape-anisotropic ZnO nanoparticles, heteroelements can be effectively entrapped inside the lattice. Different nanocrystal shapes such as nanorods, -prisms, -plates, and -spheres can be obtained, determined by the use of certain emulsification agents. The degree of morphologic alterations depends on the type of incorporated heteroelement M, concentration, and it seems that some shapes are more tolerant against doping than others. Focus was then set on the incorporation of EuÂłâș inside the ZnO particles, and it was shown that nanocrystal shape and aspect ratios could be adjusted while maintaining a fixed dopant level. Special PL properties could be observed implying energy transfer from ZnO excited near its band-gap (3.3 eV) to the EuÂłâș states mediated by defect luminescence of the nanoparticles. Indications for an influence of shape on photoluminescence (PL) properties were found. Finally, rod-like Eu@ZnO colloids were used as tracers to investigate their uptake into biological samples like HeLa cells. The PL was sufficient for identifying green and red emission under visible light excitation

    Calculated optical properties of Si, Ge, and GaAs under hydrostatic pressure

    Full text link
    The macroscopic dielectric function in the random-phase-approximation without local field effect has been implemented using the local density approximation with an all electron, full-potential linear muffin-tin orbital basis-set. This method is used to investigate the optical properties of the semiconductors Si, Ge, and GaAs under hydrostatic pressure. The pressure dependence of the effective dielectric function is compared to the experimental data of Go\~ni and coworkers, and an excellent agreement is found when the so called ``scissors-operator'' shift (SOS) is used to account for the correct band gap at Γ\Gamma. The effect of the 3d3d semi-core states in the interband transitions hardly changes the static dielectric function, ϔ∞\epsilon_\infty; however, their contribution to the intensity of absorption for higher photon energies is substantial. The spin-orbit coupling has a significant effect on ϔ∞\epsilon_\infty of Ge and GaAs, but not of Si. The E1E_1 peak in the dynamical dielectric function is strongly underestimated for Si, but only slightly for Ge and GaAs, suggesting that excitonic effects might be important only for Si.Comment: 29 RevTex pages and 12 figs; in press in Physical Review

    Activated Platelets in Carotid Artery Thrombosis in Mice Can Be Selectively Targeted with a Radiolabeled Single-Chain Antibody

    Get PDF
    BACKGROUND: Activated platelets can be found on the surface of inflamed, rupture-prone and ruptured plaques as well as in intravascular thrombosis. They are key players in thrombosis and atherosclerosis. In this study we describe the construction of a radiolabeled single-chain antibody targeting the LIBS-epitope of activated platelets to selectively depict platelet activation and wall-adherent non-occlusive thrombosis in a mouse model with nuclear imaging using in vitro and ex vivo autoradiography as well as small animal SPECT-CT for in vivo analysis. METHODOLOGY/PRINCIPAL FINDINGS: LIBS as well as an unspecific control single-chain antibody were labeled with (111)Indium ((111)In) via bifunctional DTPA ( = (111)In-LIBS/(111)In-control). Autoradiography after incubation with (111)In-LIBS on activated platelets in vitro (mean 3866 ± 28 DLU/mm(2), 4010 ± 630 DLU/mm(2) and 4520 ± 293 DLU/mm(2)) produced a significantly higher ligand uptake compared to (111)In-control (2101 ± 76 DLU/mm(2), 1181 ± 96 DLU/mm(2) and 1866 ± 246 DLU/mm(2)) indicating a specific binding to activated platelets; P<0.05. Applying these findings to an ex vivo mouse model of carotid artery thrombosis revealed a significant increase in ligand uptake after injection of (111)In-LIBS in the presence of small thrombi compared to the non-injured side, as confirmed by histology (49630 ± 10650 DLU/mm(2) vs. 17390 ± 7470 DLU/mm(2); P<0.05). These findings could also be reproduced in vivo. SPECT-CT analysis of the injured carotid artery with (111)In-LIBS resulted in a significant increase of the target-to-background ratio compared to (111)In-control (1.99 ± 0.36 vs. 1.1 ± 0.24; P < 0.01). CONCLUSIONS/SIGNIFICANCE: Nuclear imaging with (111)In-LIBS allows the detection of platelet activation in vitro and ex vivo with high sensitivity. Using SPECT-CT, wall-adherent activated platelets in carotid arteries could be depicted in vivo. These results encourage further studies elucidating the role of activated platelets in plaque pathology and atherosclerosis and might be of interest for further developments towards clinical application

    TOI-836 : a super-Earth and mini-Neptune transiting a nearby K-dwarf

    Get PDF
    Funding: TGW, ACC, and KH acknowledge support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant ST/R003203/1.We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364) using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (T = 8.5 mag), high proper motion (∌200 mas yr−1), low metallicity ([Fe/H]≈−0.28) K-dwarf with a mass of 0.68 ± 0.05 M⊙ and a radius of 0.67 ± 0.01 R⊙. We obtain photometric follow-up observations with a variety of facilities, and we use these data-sets to determine that the inner planet, TOI-836 b, is a 1.70 ± 0.07 R⊕ super-Earth in a 3.82 day orbit, placing it directly within the so-called ‘radius valley’. The outer planet, TOI-836 c, is a 2.59 ± 0.09 R⊕ mini-Neptune in an 8.60 day orbit. Radial velocity measurements reveal that TOI-836 b has a mass of 4.5 ± 0.9 M⊕, while TOI-836 c has a mass of 9.6 ± 2.6 M⊕. Photometric observations show Transit Timing Variations (TTVs) on the order of 20 minutes for TOI-836 c, although there are no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by an undetected exterior planet.Publisher PDFPeer reviewe

    TOI-836: A super-Earth and mini-Neptune transiting a nearby K-dwarf

    Full text link
    We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364) using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (T=8.5T = 8.5 mag), high proper motion (∌ 200\sim\,200 mas yr−1^{-1}), low metallicity ([Fe/H]≈ −0.28\approx\,-0.28) K-dwarf with a mass of 0.68±0.050.68\pm0.05 M⊙_{\odot} and a radius of 0.67±0.010.67\pm0.01 R⊙_{\odot}. We obtain photometric follow-up observations with a variety of facilities, and we use these data-sets to determine that the inner planet, TOI-836 b, is a 1.70±0.071.70\pm0.07 R⊕_{\oplus} super-Earth in a 3.82 day orbit, placing it directly within the so-called 'radius valley'. The outer planet, TOI-836 c, is a 2.59±0.092.59\pm0.09 R⊕_{\oplus} mini-Neptune in an 8.60 day orbit. Radial velocity measurements reveal that TOI-836 b has a mass of 4.5±0.94.5\pm0.9 M⊕_{\oplus} , while TOI-836 c has a mass of 9.6±2.69.6\pm2.6 M⊕_{\oplus}. Photometric observations show Transit Timing Variations (TTVs) on the order of 20 minutes for TOI-836 c, although there are no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by an undetected exterior planet

    Mesenchymal tumours of the mediastinum—part II

    Get PDF

    TOI-836: A super-Earth and mini-Neptune transiting a nearby K-dwarf

    Get PDF
    peer reviewe
    • 

    corecore