64 research outputs found
Search for the Flavor-Changing Neutral Current Decay with the HERA-B Detector
We report on a search for the flavor-changing neutral current decay using events recorded with a dimuon trigger in
interactions of 920 GeV protons with nuclei by the HERA-B experiment. We find
no evidence for such decays and set a 90% confidence level upper limit on the
branching fraction .Comment: 17 pages, 4 figures (of which 1 double), paper to be submitted to
Physics Letters
Open and Hidden Charm Production in 920 GeV Proton-Nucleus Collisions
The HERA-B collaboration has studied the production of charmonium and open
charm states in collisions of 920 GeV protons with wire targets of different
materials. The acceptance of the HERA-B spectrometer covers negative values of
xF up to xF=-0.3 and a broad range in transverse momentum from 0.0 to 4.8
GeV/c. The studies presented in this paper include J/psi differential
distributions and the suppression of J/psi production in nuclear media.
Furthermore, production cross sections and cross section ratios for open charm
mesons are discussed.Comment: 5 pages, 9 figures, to be published in the proceedings of the 6th
International Conference on Hyperons, Charm & Beauty Hadrons (BEACH04),
Chicago, IL, June 27 - July 3, 200
Measurement of the J/Psi Production Cross Section in 920 GeV/c Fixed-Target Proton-Nucleus Interactions
The mid-rapidity (dsigma_(pN)/dy at y=0) and total sigma_(pN) production
cross sections of J/Psi mesons are measured in proton-nucleus interactions.
Data collected by the HERA-B experiment in interactions of 920 GeV/c protons
with carbon, titanium and tungsten targets are used for this analysis. The
J/Psi mesons are reconstructed by their decay into lepton pairs. The total
production cross section obtained is sigma_(pN)(J/Psi) = 663 +- 74 +- 46
nb/nucleon. In addition, our result is compared with previous measurements
Inclusive Production Cross Sections from 920 GeV Fixed Target Proton-Nucleus Collisions
Inclusive differential cross sections and
for the production of \kzeros, \lambdazero, and
\antilambda particles are measured at HERA in proton-induced reactions on C,
Al, Ti, and W targets. The incident beam energy is 920 GeV, corresponding to
GeV in the proton-nucleon system. The ratios of differential
cross sections \rklpa and \rllpa are measured to be and , respectively, for \xf . No significant dependence upon the
target material is observed. Within errors, the slopes of the transverse
momentum distributions also show no significant
dependence upon the target material. The dependence of the extrapolated total
cross sections on the atomic mass of the target material is
discussed, and the deduced cross sections per nucleon are
compared with results obtained at other energies.Comment: 17 pages, 7 figures, 5 table
Limits for the central production of Θ+ and Ξ−− pentaquarks in 920-GeV pA collisions
We have searched for Θ+(1540) and Ξ−−(1862) pentaquark candidates in proton-inducedreactions on C, Ti, and W targets at midrapidity and s√=41.6 GeV. In 2×108 inelastic eventswe find no evidence for narrow (σ≈5 MeV) signals in the Θ+→pK0S and Ξ−−→Ξ−π− channels; our 95% C.L. upper limits (UL) forthe inclusive production cross section times branching fraction B dσ/dy $y ≈0 are (4-16) μb/N for a Θ+ mass between 1521 and 1555 MeV,and 2.5μb/N for the Ξ−−. The UL of the yield ratio of Θ+/Λ(1520)<(3-12)% is significantly lower than model predictions.Our UL of B Ξ−−/Ξ(1530)0<4% is at variance with the results that have provided the first evidencefor the Ξ−−
The QCD transition temperature: results with physical masses in the continuum limit II.
We extend our previous study [Phys. Lett. B643 (2006) 46] of the cross-over
temperatures (T_c) of QCD. We improve our zero temperature analysis by using
physical quark masses and finer lattices. In addition to the kaon decay
constant used for scale setting we determine four quantities (masses of the
\Omega baryon, K^*(892) and \phi(1020) mesons and the pion decay constant)
which are found to agree with experiment. This implies that --independently of
which of these quantities is used to set the overall scale-- the same results
are obtained within a few percent. At finite temperature we use finer lattices
down to a <= 0.1 fm (N_t=12 and N_t=16 at one point). Our new results confirm
completely our previous findings. We compare the results with those of the
'hotQCD' collaboration.Comment: 19 pages, 8 figures, 3 table
- …