1,237 research outputs found

    Patterns in the Outer Parts of Galactic Disks

    Full text link
    This paper describes test particle simulations of the response of the outer parts of Galactic disks to barring and spiral structure. Simulations are conducted for cold Mestel disks and warm quasi-exponential disks with completely flat rotation curves, subjected to pure quadrupoles and logarithmic spirals. Even though the starting velocity distributions are smooth, the end-points of the bar simulations show bimodality and multi-peaked structures at locations near the outer Lindblad resonance (OLR), although spirality can make this smoother. The growth of a bar may cause the disk isophotes to become boxy at the OLR, as stars accummulate particularly along the minor axis. The growth of a bar is also accompanied by substantial heating of the disk stars near the OLR. For the growth of a 1010M⊙10^{10} M_{\rm \odot} bar, the radial velocity dispersion is typically quadrupled for initially cold disks (initial \sigmau ∼10\sim 10 \kms), and typically doubled for disks with final \sigmau ∼45\sim 45 \kms. Simulations performed of the growth and dissolution of bars give very similar results, demonstrating that the heat once given to disk stars is very difficult to remove.Comment: 14 pages, 19 figure

    Resolving the pulsations of subdwarf B stars: HS 0039+4302, HS 0444+0458, and an examination of the group properties of resolved pulsators

    Full text link
    We continue our program of single-site observations of pulsating subdwarf B (sdB) stars and present the results of extensive time series photometry of HS 0039+4302 and HS 0444+0458. Both were observed at MDM Observatory during the fall of 2005. We extend the number of known frequencies for HS 0039+4302 from 4 to 14 and discover one additional frequency for HS 0444+0458, bringing the total to three. We perform standard tests to search for multiplet structure, measure amplitude variations, and examine the frequency density to constrain the mode degree ℓ\ell. Including the two stars in this paper, 23 pulsating sdB stars have received follow-up observations designed to decipher their pulsation spectra. It is worth an examination of what has been detected. We compare and contrast the frequency content in terms of richness and range and the amplitudes with regards to variability and diversity. We use this information to examine observational correlations with the proposed κ\kappa pulsation mechanism as well as alternative theories.Comment: 32 pages, 18 figures, 7 tables. Accepted for publication in MNRA

    Optical polarisation variability of radio loud narrow line Seyfert 1 galaxies. Search for long rotations of the polarisation plane

    Get PDF
    Narrow line Seyfert 1 galaxies (NLSy1s) constitute the AGN subclass associated with systematically smaller black hole masses. A few radio loud ones have been detected in MeV -- GeV energy bands by Fermi and evidence for the presence of blazar-like jets has been accumulated. In this study we wish to quantify the temporal behaviour of the optical polarisation, fraction and angle, for a selected sample of radio loud NLSy1s. We also search for rotations of the polarisation plane similar to those commonly observed in blazars. We have conducted R-band optical polarisation monitoring of a sample of 10 RL NLSy1s 5 of which have been previously detected by Fermi. The dataset includes observations with the RoboPol, KANATA, Perkins and Steward polarimeters. In the cases where evidences for long rotations of the polarisation plane are found, we carry out numerical simulations to assess the probability that they are caused by intrinsically evolving EVPAs instead of observational noise. Even our moderately sampled sources show indications of variability, both in polarisation fraction and angle. For the four best sampled objects in our sample we find multiple periods of significant polarisation angle variability. In the two best sampled cases, namely J1505+0326 and J0324+3410, we find indications for three long rotations. We show that although noise can induce the observed behaviour, it is much more likely that the apparent rotation is caused by intrinsic evolution of the EVPA. To our knowledge this is the very first detection of such events in this class of sources. In the case of the largest dataset (J0324+3410) we find that the EVPA concentrates around a direction which is at 49.3\degr to the 15-GHz radio jet implying a projected magnetic field at an angle of 40.7\degr to that axis.Comment: Accepted for publication in section 2. Astrophysical processes of Astronomy and Astrophysic

    Chromospheric activity, lithium and radial velocities of single late-type stars possible members of young moving groups

    Get PDF
    We present here high resolution echelle spectra taken during three observing runs of 14 single late-type stars identified in our previous studies (Montes et al. 2001b, hereafter Paper I) as possible members of different young stellar kinematic groups (Local Association (20 - 150 Myr), Ursa Major group (300 Myr), Hyades supercluster (600 Myr), and IC 2391 supercluster (35 Myr)). Radial velocities have been determined by cross correlation with radial velocity standard stars and used together with precise measurements of proper motions and parallaxes taken from Hipparcos and Tycho-2 Catalogues, to calculate Galactic space motions (U, V, W) and to apply Eggen's kinematic criteria. The chromospheric activity level of these stars have been analysed using the information provided for several optical spectroscopic features (from the Ca II H & K to Ca II IRT lines) that are formed at different heights in the chromosphere. The Li I 6707.8 AA line equivalent width (EW) has been determined and compared in the EW(Li I) versus spectral type diagram with the EW(Li I) of stars members of well known young open clusters of different ages, in order to obtain an age estimation. All these data allow us to analyse in more detail the membership of these stars in the different young stellar kinematic groups. Using both kinematic and spectroscopic criteria we have confirmed PW And, V368 Cep, V383 Lac, EP Eri, DX Leo, HD 77407, and EK Dra as members of the Local Association and V834 Tau, pi^{1} UMa, and GJ 503.2 as members of the Ursa Major group. A clear rotation-activity dependence has been found in these stars.Comment: Latex file with 19 pages, 7 figures tar'ed gzip'ed. Full postscript (text, figures and tables) available at http://www.ucm.es/info/Astrof/p_skg_stars_I_fv.ps.gz Accepted for publication in: Astronomy & Astrophysics (A&A

    The Age of the Oldest Stars in the Local Galactic Disk From Hipparcos Parallaxes of G and K Subgiants

    Full text link
    We review the history of the discovery of field subgiant stars and their importance in the age dating of the Galactic disk. We use the cataloged data from the Hipparcos satellite in this latter capacity. Based on Hipparcos parallaxes accurate to 10% or better, the absolute magnitude of the lower envelope of the nearly horizontal subgiant sequence for field stars in the H-R diagram for B-V colors between 0.85 and 1.05 is measured to be M_V = 4.03 +/- 0.06. The age of the field stars in the solar neighborhood is found to be 7.9 +/- 0.7 Gyr by fitting the theoretical isochrones for [Fe/H] = +0.37 to the lower envelope of the Hipparcos subgiants. The same grid of isochrones yields ages, in turn, of 4.0 +/- 0.2 Gyr, 6.2 +/- 0.5 Gyr, and 7.5 to 10 Gyr for the old Galactic clusters M67, NGC188, and NGC6791. The ages of both the Galactic disk in the solar neighborhood and of NGC6791 are, nevertheless, likely between 3 and 5 Gyr younger than the oldest halo globular clusters, which have ages of 13.5 Gyr. The most significant results are (1) the supermetallicity of the oldest local disk stars, and (2) the large age difference between the most metal-poor component of the halo and the thick and thin disk in the solar neighborhood. These facts are undoubtedly related and pose again the problem of the proper scenario for the timing of events in the formation of the halo and the Galactic disk in the solar neighborhood. [Abstract Abridged]Comment: 44 pages, 12 Figures; accepted for publication in PASP; high resolution versions of Figures 1, 2, 6 and 9 available at http://bubba.ucdavis.edu/~lubin/Sandage

    A spectroscopy study of nearby late-type stars, possible members of stellar kinematic groups

    Get PDF
    Nearby late-type stars are excellent targets for seeking young objects in stellar associations and moving groups. The origin of these structures is still misunderstood, and lists of moving group members often change with time and also from author to author. Most members of these groups have been identified by means of kinematic criteria, leading to an important contamination of previous lists by old field stars. We attempt to identify unambiguous moving group members among a sample of nearby-late type stars by studying their kinematics, lithium abundance, chromospheric activity, and other age-related properties. High-resolution echelle spectra (R∼57000R \sim 57000) of a sample of nearby late-type stars are used to derive accurate radial velocities that are combined with the precise Hipparcos parallaxes and proper motions to compute galactic-spatial velocity components. Stars are classified as possible members of the classical moving groups according to their kinematics. The spectra are also used to study several age-related properties for young late-type stars, i.e., the equivalent width of the lithium Li~{\sc i} \space 6707.8 \space \AA \space line or the RHK′R'_{\rm HK} index. Additional information like X-ray fluxes from the ROSAT All-Sky Survey or the presence of debris discs is also taken into account. The different age estimators are compared and the moving group membership of the kinematically selected candidates are discussed. From a total list of 405 nearby stars, 102 have been classified as moving group candidates according to their kinematics. i.e., only ∼\sim 25.2 \% of the sample. The number reduces when age estimates are considered, and only 26 moving group candidates (25.5\% of the 102 candidates) have ages in agreement with the star having the same age as an MG memberComment: 39 pages, 11 figures. Accepted for publication in Astronomy \& Astrophysic
    • …
    corecore