64 research outputs found

    Modeling habits as self-sustaining patterns of sensorimotor behavior

    Get PDF
    In the recent history of psychology and cognitive neuroscience, the notion of habit has been reduced to a stimulus-triggered response probability correlation. In this paper we use a computational model to present an alternative theoretical view (with some philosophical implications), where habits are seen as self-maintaining patterns of behavior that share properties in common with self-maintaining biological processes, and that inhabit a complex ecological context, including the presence and influence of other habits. Far from mechanical automatisms, this organismic and self-organizing concept of habit can overcome the dominating atomistic and statistical conceptions, and the high temporal resolution effects of situatedness, embodiment and sensorimotor loops emerge as playing a more central, subtle and complex role in the organization of behavior. The model is based on a novel "iterant deformable sensorimotor medium (IDSM)," designed such that trajectories taken through sensorimotor-space increase the likelihood that in the future, similar trajectories will be taken. We couple the IDSM to sensors and motors of a simulated robot, and show that under certain conditions, the IDSM conditions, the IDSM forms self-maintaining patterns of activity that operate across the IDSM, the robot's body, and the environment. We present various environments and the resulting habits that form in them. The model acts as an abstraction of habits at a much needed sensorimotor "meso-scale" between microscopic neuron-based models and macroscopic descriptions of behavior. Finally, we discuss how this model and extensions of it can help us understand aspects of behavioral self-organization, historicity and autonomy that remain out of the scope of contemporary representationalist frameworks.Matthew Egbert's contributions to this research were funded by the European Commission as part of the ALIZ-E project (FP7-ICT-248116). Xabier Barandiaran's work was funded by the eSMCs: Extending Sensorimotor Contingencies to Cognition project, FP7-ICT-2009-6 no: IST-270212. Research project "Autonomia y Niveles de Organizacion" financed by the Spanish Government (ref. FFI2011-25665) and IAS-Research group funding IT590-13 from the Basque Government. The authors would also like to thank Eran Agmon as well as Lola Caliamero and the other members of the Embodied Emotion, Cognition and (Inter-)Action Lab for discussions of the research presented above. The opinions expressed are solely the authors

    Using enactive robotics to think outside of the problem-solving box: How sensorimotor contingencies constrain the forms of emergent autononomous habits

    Get PDF
    We suggest that the influence of biology in 'biologically inspired robotics' can be embraced at a deeper level than is typical, if we adopt an enactive approach that moves the focus of interest from how problems are solved to how problems emerge in the first place. In addition to being inspired by mechanisms found in natural systems or by evolutionary design principles directed at solving problems posited by the environment, we can take inspiration from the precarious, self-maintaining organization of living systems to investigate forms of cognition that are also precarious and self-maintaining and that thus also, like life, have their own problems that must be be addressed if they are to persist. In this vein, we use a simulation to explore precarious, self-reinforcing sensorimotor habits as a building block for a robot's behavior. Our simulations of simple robots controlled by an Iterative Deformable Sensorimotor Medium demonstrate the spontaneous emergence of different habits, their re-enactment and the organization of an ecology of habits within each agent. The form of the emergent habits is constrained by the sensory modality of the robot such that habits formed under one modality (vision) are more similar to each other than they are to habits formed under another (audition). We discuss these results in the wider context of: (a) enactive approaches to life and mind, (b) sensorimotor contingency theory, (c) adaptationist vs. structuralist explanations in biology, and (d) the limits of functionalist problem-solving approaches to (artificial) intelligence.This work was supported in part via funding from the Digital Life Institute, University of Auckland. XB acknowledges funding from the Spanish Ministry of Science and Innovation for the research project Outonomy PID2019-104576GB-I00 and IAS-Research group funding IT1668-22 from Basque Government

    Behavioral metabolution: the adaptive and evolutionary potential of metabolism-based chemotaxis

    Get PDF
    We use a minimal model of metabolism-based chemotaxis to show how a coupling between metabolism and behavior can affect evolutionary dynamics in a process we refer to as behavioral metabolution. This mutual influence can function as an in-the-moment, intrinsic evaluation of the adaptive value of a novel situation, such as an encounter with a compound that activates new metabolic pathways. Our model demonstrates how changes to metabolic pathways can lead to improvement of behavioral strategies, and conversely, how behavior can contribute to the exploration and fixation of new metabolic pathways. These examples indicate the potentially important role that the interplay between behavior and metabolism could have played in shaping adaptive evolution in early life and protolife. We argue that the processes illustrated by these models can be interpreted as an unorthodox instantiation of the principles of evolution by random variation and selective retention. We then discuss how the interaction between metabolism and behavior can facilitate evolution through (i) increasing exposure to environmental variation, (ii) making more likely the fixation of some beneficial metabolic pathways, (iii) providing a mechanism for in-the-moment adaptation to changes in the environment and to changes in the organization of the organism itself, and (iv) generating conditions that are conducive to speciatio

    A Minimal Model of Metabolism Based Chemotaxis

    Get PDF
    Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis

    The GAAS Metagenomic Tool and Its Estimations of Viral and Microbial Average Genome Size in Four Major Biomes

    Get PDF
    Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS), a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites) suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and environmental conditions

    Optimising tidal range power plant operation

    Get PDF
    Tidal range power plants represent an attractive approach for the large-scale generation of electricity from the marine environment. Even though the tides and by extension the available energy resource are predictable, they are also variable in time. This variability poses a challenge regarding the optimal transient control of power plants. We consider simulation methods which include the main modes of operation of tidal power plants, along with algorithms to regulate the timing of these. This paper proposes a framework where simplified power plant operation models are coupled with gradient-based optimisation techniques to determine the optimal control strategy over multiple tidal cycles. The optimisation results inform coastal ocean simulations that include tidal power plants to gauge whether the benefits of an adaptive operation are preserved once their hydrodynamic impacts are also taken into consideration. The combined operation of two prospective tidal lagoon projects within the Bristol Channel and the Severn Estuary is used as an example to demonstrate the potential benefits of an energy maximisation optimisation approach. For the case studies considered, the inclusion of pumping and an adaptive operation is shown to deliver an overall increase in energy output of 20–40% compared to a conventional two-way uniform operation. The findings also demonstrate that smaller schemes stand to gain more from operational optimisation compared to designs of a larger scale

    Future response of global coastal wetlands to sea-level rise.

    Get PDF
    The response of coastal wetlands to sea-level rise during the twenty-first century remains uncertain. Global-scale projections suggest that between 20 and 90 per cent (for low and high sea-level rise scenarios, respectively) of the present-day coastal wetland area will be lost, which will in turn result in the loss of biodiversity and highly valued ecosystem services1-3. These projections do not necessarily take into account all essential geomorphological4-7 and socio-economic system feedbacks8. Here we present an integrated global modelling approach that considers both the ability of coastal wetlands to build up vertically by sediment accretion, and the accommodation space, namely, the vertical and lateral space available for fine sediments to accumulate and be colonized by wetland vegetation. We use this approach to assess global-scale changes in coastal wetland area in response to global sea-level rise and anthropogenic coastal occupation during the twenty-first century. On the basis of our simulations, we find that, globally, rather than losses, wetland gains of up to 60 per cent of the current area are possible, if more than 37 per cent (our upper estimate for current accommodation space) of coastal wetlands have sufficient accommodation space, and sediment supply remains at present levels. In contrast to previous studies1-3, we project that until 2100, the loss of global coastal wetland area will range between 0 and 30 per cent, assuming no further accommodation space in addition to current levels. Our simulations suggest that the resilience of global wetlands is primarily driven by the availability of accommodation space, which is strongly influenced by the building of anthropogenic infrastructure in the coastal zone and such infrastructure is expected to change over the twenty-first century. Rather than being an inevitable consequence of global sea-level rise, our findings indicate that large-scale loss of coastal wetlands might be avoidable, if sufficient additional accommodation space can be created through careful nature-based adaptation solutions to coastal management.Personal research fellowship of Mark Schuerch (Project Number 272052902) and by the Cambridge Coastal Research Unit (Visiting Scholar Programme). Furthermore, this work has partly been supported by the EU research project RISES-AM- (FP7-ENV-693396)

    Diagnosis and management of Cornelia de Lange syndrome:first international consensus statement

    Get PDF
    Cornelia de Lange syndrome (CdLS) is an archetypical genetic syndrome that is characterized by intellectual disability, well-defined facial features, upper limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in any one of seven genes, all of which have a structural or regulatory function in the cohesin complex. Although recent advances in next-generation sequencing have improved molecular diagnostics, marked heterogeneity exists in clinical and molecular diagnostic approaches and care practices worldwide. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria, both for classic CdLS and non-classic CdLS phenotypes, molecular investigations, long-term management and care planning

    Challenges and opportunities for integrating lake ecosystem modelling approaches

    Full text link
    • …
    corecore