1,248 research outputs found
Nucleon Structure from Lattice QCD
Recent advances in lattice field theory, in computer technology and in chiral
perturbation theory have enabled lattice QCD to emerge as a powerful
quantitative tool in understanding hadron structure. I describe recent progress
in the computation of the nucleon form factors and moments of parton
distribution functions, before proceeding to describe lattice studies of the
Generalized Parton Distributions (GPDs). In particular, I show how lattice
studies of GPDs contribute to building a three-dimensional picture of the
proton. I conclude by describing the prospects for studying the structure of
resonances from lattice QCD.Comment: 6 pages, invited plenary talk at NSTAR 2007, 5-8 September 2007,
Bonn, German
Ensemble decision tree models using RUSBoost for estimating risk of iron failure in drinking water distribution systems
Safe, trusted drinking water is fundamental to society. Discolouration is a key aesthetic indicator visible to customers. Investigations to understand discolouration and iron failures in water supply systems require assessment of large quantities of disparate, inconsistent, multidimensional data from multiple corporate systems. A comprehensive data matrix was assembled for a seven year period across the whole of a UK water company (serving three million people). From this a novel data driven tool for assessment of iron risk was developed based on a yearly update and ranking procedure, for a subset of the best quality data. To avoid a ‘black box’ output, and provide an element of explanatory (human readable) interpretation, classification decision trees were utilised. Due to the very limited number of iron failures, results from many weak learners were melded into one high-quality ensemble predictor using the RUSBoost algorithm which is designed for class imbalance. Results, exploring simplicity vs predictive power, indicate enough discrimination between variable relationships in the matrix to produce ensemble decision tree classification models with good accuracy for iron failure estimation at District Management Area (DMA) scale. Two model variants were explored: ‘Nowcast’ (situation at end of calendar year) and ‘Futurecast’ (predict end of next year situation from this year’s data). The Nowcast 2014 model achieved 100% True Positive Rate (TPR) and 95.3% True Negative Rate (TNR), with 3.3% of DMAs classified High Risk for un-sampled instances. The Futurecast 2014 achieved 60.5% TPR and 75.9% TNR, with 25.7% of DMAs classified High Risk for un-sampled instances. The output can be used to focus preventive measures to improve iron compliance
Ensemble decision tree models using RUSBoost for estimating risk of iron failure in drinking water distribution systems
Safe, trusted drinking water is fundamental to society. Discolouration is a key aesthetic indicator visible to customers. Investigations to understand discolouration and iron failures in water supply systems require assessment of large quantities of disparate, inconsistent, multidimensional data from multiple corporate systems. A comprehensive data matrix was assembled for a seven year period across the whole of a UK water company (serving three million people). From this a novel data driven tool for assessment of iron risk was developed based on a yearly update and ranking procedure, for a subset of the best quality data. To avoid a ‘black box’ output, and provide an element of explanatory (human readable) interpretation, classification decision trees were utilised. Due to the very limited number of iron failures, results from many weak learners were melded into one high-quality ensemble predictor using the RUSBoost algorithm which is designed for class imbalance. Results, exploring simplicity vs predictive power, indicate enough discrimination between variable relationships in the matrix to produce ensemble decision tree classification models with good accuracy for iron failure estimation at District Management Area (DMA) scale. Two model variants were explored: ‘Nowcast’ (situation at end of calendar year) and ‘Futurecast’ (predict end of next year situation from this year’s data). The Nowcast 2014 model achieved 100% True Positive Rate (TPR) and 95.3% True Negative Rate (TNR), with 3.3% of DMAs classified High Risk for un-sampled instances. The Futurecast 2014 achieved 60.5% TPR and 75.9% TNR, with 25.7% of DMAs classified High Risk for un-sampled instances. The output can be used to focus preventive measures to improve iron compliance
Slow relaxation in granular compaction
Experimental studies show that the density of a vibrated granular material
evolves from a low density initial state into a higher density final steady
state. The relaxation towards the final density value follows an inverse
logarithmic law. We propose a simple stochastic adsorption-desorption process
which captures the essential mechanism underlying this remarkably slow
relaxation. As the system approaches its final state, a growing number of beads
have to be rearranged to enable a local density increase. In one dimension,
this number grows as , and the density increase rate is
drastically reduced by a factor . Consequently, a logarithmically slow
approach to the final state is found .Comment: revtex, 4 pages, 3 figures, also available from
http://arnold.uchicago.edu/~ebn
Friedel oscillations in a two-band Hubbard model for CuO chains
Friedel oscillations induced by open boundary conditions in a two-band
Hubbard model for CuO chains are numerically studied. We find that for
physically realistic parameters and close to quarter filling, these
oscillations have a 2k_F modulation according with experimental results on
YBa_2Cu_3O_{7-delta}. In addition, we predict that, for the same parameters, as
hole doping is reduced from quarter filling to half filling, Friedel
oscillations would acquire a 4k_F modulation, typical of a strongly correlated
electrons regime. The 4k_F modulation dominates also in the electron doped
region. The range of parameters varied is very broad, and hence the results
reported could apply to other cuprates and other strongly correlated compounds
with quasi-one dimensional structures. On a more theoretical side, we stress
the fact that the copper and oxygen subsystems should be described by two
different Luttinger liquid exponents.Comment: 7 pages, 7 eps figure
Chiral Analysis of Quenched Baryon Masses
We extend to quenched QCD an earlier investigation of the chiral structure of
the masses of the nucleon and the delta in lattice simulations of full QCD.
Even after including the meson-loop self-energies which give rise to the
leading and next-to-leading non-analytic behaviour (and hence the most rapid
variation in the region of light quark mass), we find surprisingly little
curvature in the quenched case. Replacing these meson-loop self-energies by the
corresponding terms in full QCD yields a remarkable level of agreement with the
results of the full QCD simulations. This comparison leads to a very good
understanding of the origins of the mass splitting between these baryons.Comment: 23 pages, 6 figure
Organic and conventional tomato cropping systems.
Among several alternative agricultural systems have been developed, organic agriculture has deserved increasing interest from. The objective of this paper was comparing both organic (OS) and conventional (CS) tomato cropping systems for varieties Débora and Santa Clara, through an interdisciplinary study. The experiment was set up in a randomized blocks design with six replicates, in a dystrophic Ultisol plots measuring 25 ´ 17 m. Cropping procedures followed by either local conventional or organic growers practices recommendations. Fertilization in the OS was done with organic compost, single superphosphate, dolomitic limes (5L, 60 g, and 60 g per pit), and sprayed twice a week with biofertilizer. Fertilization in the CS was done with 200 g 4-14-8 (NPK) per pit and, after planting, 30 g N, 33 g K and 10.5 g P per pit; from 52 days after planting forth, plants were sprayed once a week with foliar fertilizer. In the CS, a blend of insecticides, fungicides and miticides was sprayed twice a week, after planting. In the OS, extracts of black pepper, garlic, and Eucalyptus; Bordeaux mixture, and biofertilizer, were applied twice a week to control diseases and pests. Tomato spotted wilt was the most important disease in the OS, resulting in smaller plant development, number of flower clusters and yield. In the CS, the disease was kept under control, and the population of thrips, the virus vector, occurred at lower levels than in the OS. Variety Santa Clara presented greater incidence of the viral disease, and for this reason had a poorer performance than 'Débora', especially in the OS. Occurrence of Liriomyza spp. was significantly smaller in the OS, possibly because of the greater frequency of Chrysoperla. The CS had smaller incidence of leaf spots caused by Septoria lycopersici and Xanthomonas vesicatoria. However, early blight and fruit rot caused by Alternaria solani occurred in larger numbers. No differences were observed with regard to the communities of fungi and bacteria in the phylloplane, and to the occurrence of weeds
Giant magnetothermopower of magnon-assisted transport in ferromagnetic tunnel junctions
We present a theoretical description of the thermopower due to
magnon-assisted tunneling in a mesoscopic tunnel junction between two
ferromagnetic metals. The thermopower is generated in the course of thermal
equilibration between two baths of magnons, mediated by electrons. For a
junction between two ferromagnets with antiparallel polarizations, the ability
of magnon-assisted tunneling to create thermopower depends on the
difference between the size of the majority and
minority band Fermi surfaces and it is proportional to a temperature dependent
factor where is the magnon Debye
energy. The latter factor reflects the fractional change in the net
magnetization of the reservoirs due to thermal magnons at temperature
(Bloch's law). In contrast, the contribution of magnon-assisted
tunneling to the thermopower of a junction with parallel polarizations is
negligible. As the relative polarizations of ferromagnetic layers can be
manipulated by an external magnetic field, a large difference results in a magnetothermopower effect. This
magnetothermopower effect becomes giant in the extreme case of a junction
between two half-metallic ferromagnets, .Comment: 9 pages, 4 eps figure
Quenched chiral logarithms in lattice QCD with exact chiral symmetry
We examine quenched chiral logarithms in lattice QCD with overlap Dirac
quark. For 100 gauge configurations generated with the Wilson gauge action at on the lattice, we compute quenched quark
propagators for 12 bare quark masses. The pion decay constant is extracted from
the pion propagator, and from which the lattice spacing is determined to be
0.147 fm. The presence of quenched chiral logarithm in the pion mass is
confirmed, and its coefficient is determined to be , in agreement with the theoretical estimate in quenched chiral perturbation
theory. Further, we obtain the topological susceptibility of these 100 gauge
configurations by measuring the index of the overlap Dirac operator. Using a
formula due to exact chiral symmetry, we obtain the mass in quenched
chiral perturbation theory, Mev, and an estimate
of , which is in good agreement with that
determined from the pion mass.Comment: 24 pages, 6 EPS figures; v2: some clarifications added, to appear in
Physical Review
Quenched Lattice QCD with Domain Wall Fermions and the Chiral Limit
Quenched QCD simulations on three volumes, , and
and three couplings, , 5.85 and 6.0 using domain
wall fermions provide a consistent picture of quenched QCD. We demonstrate that
the small induced effects of chiral symmetry breaking inherent in this
formulation can be described by a residual mass (\mres) whose size decreases
as the separation between the domain walls () is increased. However, at
stronger couplings much larger values of are required to achieve a given
physical value of \mres. For and , we find
\mres/m_s=0.033(3), while for , and ,
\mres/m_s=0.074(5), where is the strange quark mass. These values are
significantly smaller than those obtained from a more naive determination in
our earlier studies. Important effects of topological near zero modes which
should afflict an accurate quenched calculation are easily visible in both the
chiral condensate and the pion propagator. These effects can be controlled by
working at an appropriately large volume. A non-linear behavior of in
the limit of small quark mass suggests the presence of additional infrared
subtlety in the quenched approximation. Good scaling is seen both in masses and
in over our entire range, with inverse lattice spacing varying between
1 and 2 GeV.Comment: 91 pages, 34 figure
- …
