388 research outputs found
Gauge invariance of the background average effective action
Using the background field method for the functional renormalization group
approach in the case of a generic gauge theory, we study the background field
symmetry and gauge dependence of the background average effective action, when
the regulator action depends on external fields. The final result is that the
symmetry of the average effective action can be maintained for a wide class of
regulator functions, but in all cases the dependence of the gauge fixing
remains on-shell. The Yang-Mills theory is considered as the main particular
example.Comment: Fits the version accepted in EPJ
A comparison of dry and wet season aerosol number fluxes over the Amazon rain forest
Vertical number fluxes of aerosol particles and vertical fluxes of CO(2) were measured with the eddy covariance method at the top of a 53 m high tower in the Amazon rain forest as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) experiment. The observed aerosol number fluxes included particles with sizes down to 10 nm in diameter. The measurements were carried out during the wet and dry season in 2008. In this study focus is on the dry season aerosol fluxes, with significant influence from biomass burning, and these are compared with aerosol fluxes measured during the wet season. Net particle deposition fluxes dominated in daytime in both seasons and the deposition flux was considerably larger in the dry season due to the much higher dry season particle concentration. The particle transfer velocity increased linearly with increasing friction velocity in both seasons. The difference in transfer velocity between the two seasons was small, indicating that the seasonal change in aerosol number size distribution is not enough for causing any significant change in deposition velocity. In general, particle transfer velocities in this study are low compared to studies over boreal forests. The reasons are probably the high percentage of accumulation mode particles and the low percentage of nucleation mode particles in the Amazon boundary layer, both in the dry and wet season, and low wind speeds in the tropics compared to the midlatitudes. In the dry season, nocturnal particle fluxes behaved very similar to the nocturnal CO(2) fluxes. Throughout the night, the measured particle flux at the top of the tower was close to zero, but early in the morning there was an upward particle flux peak that is not likely a result of entrainment or local pollution. It is possible that these morning upward particle fluxes are associated with emission of primary biogenic particles from the rain forest. Emitted particles may be stored within the canopy during stable conditions at nighttime, similarly to CO(2), and being released from the canopy when conditions become more turbulent in the morning.National Institute for Research in the Amazon (INPA)LBACNPq/MCTFAPES
HTLV-1 infection modulates the immune response in HIV-HCV coinfected patients and may increase spontaneous HCV clearance
Aerosol number fluxes over the Amazon rain forest during the wet season
Number fluxes of particles with diameter larger than 10 nm were measured with the eddy covariance method over the Amazon rain forest during the wet season as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) campaign 2008. The primary goal was to investigate whether sources or sinks dominate the aerosol number flux in the tropical rain forest-atmosphere system. During the measurement campaign, from 12 March to 18 May, 60% of the particle fluxes pointed downward, which is a similar fraction to what has been observed over boreal forests. The net deposition flux prevailed even in the absolute cleanest atmospheric conditions during the campaign and therefore cannot be explained only by deposition of anthropogenic particles. The particle transfer velocity v(t) increased with increasing friction velocity and the relation is described by the equation v(t) = 2.4x10(-3)xu(*) where u(*) is the friction velocity. Upward particle fluxes often appeared in the morning hours and seem to a large extent to be an effect of entrainment fluxes into a growing mixed layer rather than primary aerosol emission. In general, the number source of primary aerosol particles within the footprint area of the measurements was small, possibly because the measured particle number fluxes reflect mostly particles less than approximately 200 nm. This is an indication that the contribution of primary biogenic aerosol particles to the aerosol population in the Amazon boundary layer may be low in terms of number concentrations. However, the possibility of horizontal variations in primary aerosol emission over the Amazon rain forest cannot be ruled out.National Institute for Research in the Amazon (INPA)LBA infrastructure teamCNPq/MCT Millennium Institute ProgramFAPES
Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds
In-situ measurements in convective clouds (up to the freezing level) over the Amazon basin show that smoke from deforestation fires prevents clouds from precipitating until they acquire a vertical development of at least 4 km, compared to only 1-2 km in clean clouds. The average cloud depth required for the onset of warm rain increased by similar to 350 m for each additional 100 cloud condensation nuclei per cm(3) at a super-saturation of 0.5% (CCN0.5%). In polluted clouds, the diameter of modal liquid water content grows much slower with cloud depth (at least by a factor of similar to 2), due to the large number of droplets that compete for available water and to the suppressed coalescence processes. Contrary to what other studies have suggested, we did not observe this effect to reach saturation at 3000 or more accumulation mode particles per cm(3). The CCN0.5% concentration was found to be a very good predictor for the cloud depth required for the onset of warm precipitation and other microphysical factors, leaving only a secondary role for the updraft velocities in determining the cloud drop size distributions. The effective radius of the cloud droplets (r(e)) was found to be a quite robust parameter for a given environment and cloud depth, showing only a small effect of partial droplet evaporation from the cloud's mixing with its drier environment. This supports one of the basic assumptions of satellite analysis of cloud microphysical processes: the ability to look at different cloud top heights in the same region and regard their r(e) as if they had been measured inside one well developed cloud. The dependence of r(e) on the adiabatic fraction decreased higher in the clouds, especially for cleaner conditions, and disappeared at r(e)>=similar to 10 mu m. We propose that droplet coalescence, which is at its peak when warm rain is formed in the cloud at r(e)=similar to 10 mu m, continues to be significant during the cloud's mixing with the entrained air, cancelling out the decrease in r(e) due to evaporation
Comparing properties of natural biogenic with biomass burning particles in Amazonia.
The Large Scale Biosphere Atmosphere Experiment in\ud
Amazonia (LBA) is a long-term (20 years) research effort\ud
aimed at the understanding of the functioning of the\ud
Amazonian ecosystem. The strong biosphere-atmosphere\ud
interaction is a key component of the ecosystem functioning.\ud
Two aerosol components are the most visible: The natural\ud
biogenic emissions of particles and VOCs, and the biomass\ud
burning emissions.\ud
Two aerosol and trace gases monitoring stations were\ud
operated for 4 years in Manaus and Porto Velho, two very\ud
distinct sites, with different land use change. Manaus is a very\ud
clean and pristine site and Porto Velho is representative of\ud
heavy land use change in Amazonia. Aerosol composition,\ud
optical properties, size distribution, vertical profiling and\ud
optical depth were measured from 2008 to 2012. Aerosol\ud
radiative forcing was calculated over large areas. It was\ud
observed that the natural biogenic aerosol has significant\ud
absorption properties. Organic aerosol dominates the aerosol\ud
mass with 80 to 95%. Light scattering and light absorption\ud
shows an increase by factor of 10 from Manaus to Porto\ud
Velho. Very few new particle formation events were\ud
observed. Strong links between aerosols and VOC emissions\ud
were observed. Aerosol radiative forcing in Rondonia shows\ud
a high -15 watts/m² during the dry season of 2010, showing\ud
the large impacts of aerosol loading in the Amazonian\ud
ecosystem. The increase in diffuse radiation changes the\ud
forest carbon uptake by 20 to 35%, a large increase in this\ud
important ecosystem
High Zika Virus Seroprevalence in Salvador, Northeastern Brazil Limits the Potential for Further Outbreaks.
During 2015 to 2016, Brazil reported more Zika virus (ZIKV) cases than any other country, yet population exposure remains unknown. Serological studies of ZIKV are hampered by cross-reactive immune responses against heterologous viruses. We conducted serosurveys for ZIKV, dengue virus (DENV), and Chikungunya virus (CHIKV) in 633 individuals prospectively sampled during 2015 to 2016, including microcephaly and non-microcephaly pregnancies, HIV-infected patients, tuberculosis patients, and university staff in Salvador in northeastern Brazil using enzyme-linked immunosorbent assays (ELISAs) and plaque reduction neutralization tests. Sera sampled retrospectively during 2013 to 2015 from 277 HIV-infected patients were used to assess the spread of ZIKV over time. Individuals were georeferenced, and sociodemographic indicators were compared between ZIKV-positive and -negative areas and areas with and without microcephaly cases. Epidemiological key parameters were modeled in a Bayesian framework. ZIKV seroprevalence increased rapidly during 2015 to 2016, reaching 63.3% by 2016 (95% confidence interval [CI], 59.4 to 66.8%), comparable to the seroprevalence of DENV (75.7%; CI, 69.4 to 81.1%) and higher than that of CHIKV (7.4%; CI, 5.6 to 9.8%). Of 19 microcephaly pregnancies, 94.7% showed ZIKV IgG antibodies, compared to 69.3% of 257 non-microcephaly pregnancies (P = 0.017). Analyses of sociodemographic data revealed a higher ZIKV burden in low socioeconomic status (SES) areas. High seroprevalence, combined with case data dynamics allowed estimates of the basic reproduction number R0 of 2.1 (CI, 1.8 to 2.5) at the onset of the outbreak and an effective reproductive number Reff of <1 in subsequent years. Our data corroborate ZIKV-associated congenital disease and an association of low SES and ZIKV infection and suggest that population immunity caused cessation of the outbreak. Similar studies from other areas will be required to determine the fate of the American ZIKV outbreak.IMPORTANCE The ongoing American Zika virus (ZIKV) outbreak involves millions of cases and has a major impact on maternal and child health. Knowledge of infection rates is crucial to project future epidemic patterns and determine the absolute risk of microcephaly upon maternal ZIKV infection during pregnancy. For unknown reasons, the vast majority of ZIKV-associated microcephaly cases are concentrated in northeastern Brazil. We analyzed different subpopulations from Salvador, a Brazilian metropolis representing one of the most affected areas during the American ZIKV outbreak. We demonstrate rapid spread of ZIKV in Salvador, Brazil, and infection rates exceeding 60%. We provide evidence for the link between ZIKV and microcephaly, report that ZIKV predominantly affects geographic areas with low socioeconomic status, and show that population immunity likely caused cessation of the outbreak. Our results enable stakeholders to identify target populations for vaccination and for trials on vaccine efficacy and allow refocusing of research efforts and intervention strategies
Os desafios em ciência, tecnologia & inovação - resultados alcançados com o fundo setorial de recursos hídricos
Aerosol and precipitation chemistry measurements in a remote site in Central Amazonia: the role of biogenic contribution
In this analysis a 3.5 years data set of aerosol and precipitation chemistry, obtained in a remote site in Central Amazonia (Balbina, (1A degrees 55' S, 59A degrees 29' W, 174 m a.s.l.), about 200 km north of Manaus) is discussed. Aerosols were sampled using stacked filter units (SFU), which separate fine (d < 2.5 mu m) and coarse mode (2.5 mu m < d < 10.0 mu m) aerosol particles. Filters were analyzed for particulate mass (PM), Equivalent Black Carbon (BCE) and elemental composition by Particle Induced X-Ray Emission (PIXE). Rainwater samples were collected using a wet-only sampler and samples were analyzed for pH and ionic composition, which was determined using ionic chromatography (IC). Natural sources dominated the aerosol mass during the wet season, when it was predominantly of natural biogenic origin mostly in the coarse mode, which comprised up to 81% of PM10. Biogenic aerosol from both primary emissions and secondary organic aerosol dominates the fine mode in the wet season, with very low concentrations (average 2.2 mu g m(-3)). Soil dust was responsible for a minor fraction of the aerosol mass (less than 17%). Sudden increases in the concentration of elements as Al, Ti and Fe were also observed, both in fine and coarse mode (mostly during the April-may months), which we attribute to episodes of Saharan dust transport. During the dry periods, a significant contribution to the fine aerosols loading was observed, due to the large-scale transport of smoke from biomass burning in other portions of the Amazon basin. This contribution is associated with the enhancement of the concentration of S, K, Zn and BCE. Chlorine, which is commonly associated to sea salt and also to biomass burning emissions, presented higher concentration not only during the dry season but also for the April-June months, due to the establishment of more favorable meteorological conditions to the transport of Atlantic air masses to Central Amazonia. The chemical composition of rainwater was similar to those ones observed in other remote sites in tropical forests. The volume-weighted mean (VWM) pH was 4.90. The most important contribution to acidity was from weak organic acids. The organic acidity was predominantly associated with the presence of acetic acid instead of formic acid, which is more often observed in pristine tropical areas. Wet deposition rates for major species did not differ significantly between dry and wet season, except for NH4+, citrate and acetate, which had smaller deposition rates during dry season. While biomass burning emissions were clearly identified in the aerosol component, it did not present a clear signature in rainwater. The biogenic component and the long-range transport of sea salt were observed both in aerosols and rainwater composition. The results shown here indicate that in Central Amazonia it is still possible to observe quite pristine atmospheric conditions, relatively free of anthropogenic influences.FAPESPFAPESPCNPqCNP
Coadministration of the Three Antigenic Leishmania infantum Poly (A) Binding Proteins as a DNA Vaccine Induces Protection against Leishmania major Infection in BALB/c Mice
Highly conserved intracellular proteins from Leishmania have been described as antigens in natural and experimental infected mammals. The present study aimed to evaluate the antigenicity and prophylactic properties of the Leishmania infantum Poly (A) binding proteins (LiPABPs). Three different members of the LiPABP family have been described. Recombinant tools based on these proteins were constructed: recombinant proteins and DNA vaccines. The three recombinant proteins were employed for coating ELISA plates. Sera from human and canine patients of visceral leishmaniasis and human patients of mucosal leishmaniasis recognized the three LiPABPs. In addition, the protective efficacy of a DNA vaccine based on the combination of the three Leishmania PABPs has been tested in a model of progressive murine leishmaniasis: BALB/c mice infected with Leishmania major. The induction of a Th1-like response against the LiPABP family by genetic vaccination was able to down-regulate the IL-10 predominant responses elicited by parasite LiPABPs after infection in this murine model. This modulation resulted in a partial protection against L. major infection. LiPABP vaccinated mice showed a reduction on the pathology that was accompanied by a decrease in parasite burdens, in antibody titers against Leishmania antigens and in the IL-4 and IL-10 parasite-specific mediated responses in comparison to control mice groups immunized with saline or with the non-recombinant plasmid. The results presented here demonstrate for the first time the prophylactic properties of a new family of Leishmania antigenic intracellular proteins, the LiPABPs. The redirection of the immune response elicited against the LiPABP family (from IL-10 towards IFN-γ mediated responses) by genetic vaccination was able to induce a partial protection against the development of the disease in a highly susceptible murine model of leishmaniasisThe study was supported in Spain by grants from Ministerio de Ciencia e Innovación FIS
PI11/00095 and FISPI14/00366 from the Instituto de Salud Carlos III within the Network of TropicalDiseases Research (VI P I+D+I 2008-2011, ISCIII -Subdirección General de Redes y Centros de Investigación Cooperativa (RD12/0018/0009)). This work was also supported in Brazil by a grant from CNPq (Ciencia sem Fronteiras-PVE 300174/2014-4). A CBMSO institutional grant from Fundación Ramón Areces is also acknowledged. EAFC is a grant recipient of CNPq. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscrip
- …
