173 research outputs found

    Knowledge, attitudes and practice survey about antimicrobial resistance and prescribing among physicians in a hospital setting in Lima, Peru

    Get PDF
    BACKGROUND: Misuse of antimicrobials (AMs) and antimicrobial resistance (AMR) are global concerns. The present study evaluated knowledge, attitudes and practices about AMR and AM prescribing among medical doctors in two large public hospitals in Lima, Peru, a middle-income country. METHODS: Cross-sectional study using a self-administered questionnaire RESULTS: A total of 256 participants completed the questionnaire (response rate 82%). Theoretical knowledge was good (mean score of 6 +/- 1.3 on 7 questions) in contrast to poor awareness (< 33%) of local AMR rates of key-pathogens. Participants strongly agreed that AMR is a problem worldwide (70%) and in Peru (65%), but less in their own practice (22%). AM overuse was perceived both for the community (96%) and the hospital settings (90%). Patients' pressure to prescribing AMs was considered as contributing to AM overuse in the community (72%) more than in the hospital setting (50%). Confidence among AM prescribing was higher among attending physicians (82%) compared to residents (30%, p < 0.001%). Sources of information considered as very useful/useful included pocket-based AM prescribing guidelines (69%) and internet sources (62%). Fifty seven percent of participants regarded AMs in their hospitals to be of poor quality. Participants requested more AM prescribing educational programs (96%) and local AM guidelines (92%). CONCLUSIONS: This survey revealed topics to address during future AM prescribing interventions such as dissemination of information about local AMR rates, promoting confidence in the quality of locally available AMs, redaction and dissemination of local AM guidelines and addressing the general public, and exploring the possibilities of internet-based training

    Alternative Complement Pathway Deregulation Is Correlated with Dengue Severity

    Get PDF
    BACKGROUND:The complement system, a key component that links the innate and adaptive immune responses, has three pathways: the classical, lectin, and alternative pathways. In the present study, we have analyzed the levels of various complement components in blood samples from dengue fever (DF) and dengue hemorrhagic fever (DHF) patients and found that the level of complement activation is associated with disease severity. METHODS AND RESULTS:Patients with DHF had lower levels of complement factor 3 (C3; p = 0.002) and increased levels of C3a, C4a and C5a (p<0.0001) when compared to those with the less severe form, DF. There were no significant differences between DF and DHF patients in the levels of C1q, immunocomplexes (CIC-CIq) and CRP. However, small but statistically significant differences were detected in the levels of MBL. In contrast, the levels of two regulatory proteins of the alternative pathway varied widely between DF and DHF patients: DHF patients had higher levels of factor D (p = 0.01), which cleaves factor B to yield the active (C3bBb) C3 convertase, and lower levels of factor H (p = 0.03), which inactivates the (C3bBb) C3 convertase, than did DF patients. When we considered the levels of factors D and H together as an indicator of (C3bBb) C3 convertase regulation, we found that the plasma levels of these regulatory proteins in DHF patients favored the formation of the (C3bBb) C3 convertase, whereas its formation was inhibited in DF patients (p<0.0001). CONCLUSION:The data suggest that an imbalance in the levels of regulatory factors D and H is associated with an abnormal regulation of complement activity in DHF patients

    Impact of Facial Conformation on Canine Health: Corneal Ulceration

    Get PDF
    Concern has arisen in recent years that selection for extreme facial morphology in the domestic dog may be leading to an increased frequency of eye disorders. Corneal ulcers are a common and painful eye problem in domestic dogs that can lead to scarring and/or perforation of the cornea, potentially causing blindness. Exaggerated juvenile-like craniofacial conformations and wide eyes have been suspected as risk factors for corneal ulceration. This study aimed to quantify the relationship between corneal ulceration risk and conformational factors including relative eyelid aperture width, brachycephalic (short-muzzled) skull shape, the presence of a nasal fold (wrinkle), and exposed eye-white. A 14 month cross-sectional study of dogs entering a large UK based small animal referral hospital for both corneal ulcers and unrelated disorders was carried out. Dogs were classed as affected if they were diagnosed with a corneal ulcer using fluorescein dye while at the hospital (whether referred for this disorder or not), or if a previous diagnosis of corneal ulcer(s) was documented in the dogs’ histories. Of 700 dogs recruited, measured and clinically examined, 31 were affected by corneal ulcers. Most cases were male (71%), small breed dogs (mean± SE weight: 11.4±1.1 kg), with the most commonly diagnosed breed being the Pug. Dogs with nasal folds were nearly five times more likely to be affected by corneal ulcers than those without, and brachycephalic dogs (craniofacial ratio <0.5) were twenty times more likely to be affected than non-brachycephalic dogs. A 10% increase in relative eyelid aperture width more than tripled the ulcer risk. Exposed eye-white was associated with a nearly three times increased risk. The results demonstrate that artificially selecting for these facial characteristics greatly heightens the risk of corneal ulcers, and such selection should thus be discouraged to improve canine welfare

    Independent Recruitment of a Flavin-Dependent Monooxygenase for Safe Accumulation of Sequestered Pyrrolizidine Alkaloids in Grasshoppers and Moths

    Get PDF
    Several insect lineages have developed diverse strategies to sequester toxic pyrrolizidine alkaloids from food-plants for their own defense. Here, we show that in two highly divergent insect taxa, the hemimetabolous grasshoppers and the holometabolous butterflies, an almost identical strategy evolved independently for safe accumulation of pyrrolizidine alkaloids. This strategy involves a pyrrolizidine alkaloid N-oxygenase that transfers the pyrrolizidine alkaloids to their respective N-oxide, enabling the insects to avoid high concentrations of toxic pyrrolizidine alkaloids in the hemolymph. We have identified a pyrrolizidine alkaloid N-oxygenase, which is a flavin-dependent monooxygenase, of the grasshopper Zonocerus variegatus. After heterologous expression in E. coli, this enzyme shows high specificity for pyrrolizidine alkaloids of various structural types and for the tropane alkaloid atropine as substrates, a property that has been described previously for a pyrrolizidine alkaloid N-oxygenase of the arctiid moth Grammia geneura. Phylogenetic analyses of insect flavin-dependent monooxygenase sequences suggest that independent gene duplication events preceded the establishment of this specific enzyme in the lineages of the grasshoppers and of arctiid moths. Two further flavin-dependent monooxygenase sequences have been identified from Z. variegatus sharing amino acid identities of approximately 78% to the pyrrolizidine alkaloid N-oxygenase. After heterologous expression, both enzymes are also able to catalyze the N-oxygenation of pyrrolizidine alkaloids, albeit with a 400-fold lower specific activity. With respect to the high sequence identity between the three Z. variegatus sequences this ability to N-oxygenize pyrrolizidine alkaloids is interpreted as a relict of a former bifunctional ancestor gene of which one of the gene copies optimized this activity for the specific adaptation to pyrrolizidine alkaloid containing food plants

    An abrupt weakening of the subpolar gyre as trigger of Little Ice Age-type episodes

    Get PDF
    We investigate the mechanism of a decadal-scale weakening shift in the strength of the subpolar gyre (SPG) that is found in one among three last millennium simulations with a state-of-the-art Earth system model. The SPG shift triggers multicentennial anomalies in the North Atlantic climate driven by long-lasting internal feedbacks relating anomalous oceanic and atmospheric circulation, sea ice extent, and upper-ocean salinity in the Labrador Sea. Yet changes throughout or after the shift are not associated with a persistent weakening of the Atlantic Meridional Overturning Circulation or shifts in the North Atlantic Oscillation. The anomalous climate state of the North Atlantic simulated after the shift agrees well with climate reconstructions from within the area, which describe a transition between a stronger and weaker SPG during the relatively warm medieval climate and the cold Little Ice Age respectively. However, model and data differ in the timing of the onset. The simulated SPG shift is caused by a rapid increase in the freshwater export from the Arctic and associated freshening in the upper Labrador Sea. Such freshwater anomaly relates to prominent thickening of the Arctic sea ice, following the cluster of relatively small-magnitude volcanic eruptions by 1600 CE. Sensitivity experiments without volcanic forcing can nonetheless produce similar abrupt events; a necessary causal link between the volcanic cluster and the SPG shift can therefore be excluded. Instead, preconditioning by internal variability explains discrepancies in the timing between the simulated SPG shift and the reconstructed estimates for the Little Ice Age onset

    Genome-Wide Association between Branch Point Properties and Alternative Splicing

    Get PDF
    The branch point (BP) is one of the three obligatory signals required for pre-mRNA splicing. In mammals, the degeneracy of the motif combined with the lack of a large set of experimentally verified BPs complicates the task of modeling it in silico, and therefore of predicting the location of natural BPs. Consequently, BPs have been disregarded in a considerable fraction of the genome-wide studies on the regulation of splicing in mammals. We present a new computational approach for mammalian BP prediction. Using sequence conservation and positional bias we obtained a set of motifs with good agreement with U2 snRNA binding stability. Using a Support Vector Machine algorithm, we created a model complemented with polypyrimidine tract features, which considerably improves the prediction accuracy over previously published methods. Applying our algorithm to human introns, we show that BP position is highly dependent on the presence of AG dinucleotides in the 3′ end of introns, with distance to the 3′ splice site and BP strength strongly correlating with alternative splicing. Furthermore, experimental BP mapping for five exons preceded by long AG-dinucleotide exclusion zones revealed that, for a given intron, more than one BP can be chosen throughout the course of splicing. Finally, the comparison between exons of different evolutionary ages and pseudo exons suggests a key role of the BP in the pathway of exon creation in human. Our computational and experimental analyses suggest that BP recognition is more flexible than previously assumed, and it appears highly dependent on the presence of downstream polypyrimidine tracts. The reported association between BP features and the splicing outcome suggests that this, so far disregarded but yet crucial, element buries information that can complement current acceptor site models

    Cross-Sectional Analysis of Late HAART Initiation in Latin America and the Caribbean: Late Testers and Late Presenters

    Get PDF
    Background: Starting HAART in a very advanced stage of disease is assumed to be the most prevalent form of initiation in HIV-infected subjects in developing countries. Data from Latin America and the Caribbean is still lacking. Our main objective was to determine the frequency, risk factors and trends in time for being late HAART initiator (LHI) in this region. Methodology: Cross-sectional analysis from 9817 HIV-infected treatment-naive patients initiating HAART at 6 sites (Argentina, Chile, Haiti, Honduras, Peru and Mexico) from October 1999 to July 2010. LHI had CD4+^+ count ≤\leq200cells/mm3^3 prior to HAART. Late testers (LT) were those LHI who initiated HAART within 6 months of HIV diagnosis. Late presenters (LP) initiated after 6 months of diagnosis. Prevalence, risk factors and trends over time were analyzed. Principal Findings: Among subjects starting HAART (n = 9817) who had baseline CD4+^+ available (n = 8515), 76% were LHI: Argentina (56%[95%CI:52–59]), Chile (80%[95%CI:77–82]), Haiti (76%[95%CI:74–77]), Honduras (91%[95%CI:87–94]), Mexico (79%[95%CI:75–83]), Peru (86%[95%CI:84–88]). The proportion of LHI statistically changed over time (except in Honduras) (p≤0.02p\leq0.02; Honduras p = 0.7), with a tendency towards lower rates in recent years. Males had increased risk of LHI in Chile, Haiti, Peru, and in the combined site analyses (CSA). Older patients were more likely LHI in Argentina and Peru (OR 1.21 per +10-year of age, 95%CI:1.02–1.45; OR 1.20, 95%CI:1.02–1.43; respectively), but not in CSA (OR 1.07, 95%CI:0.94–1.21). Higher education was associated with decreased risk for LHI in Chile (OR 0.92 per +1-year of education, 95%CI:0.87–0.98) (similar trends in Mexico, Peru, and CSA). LHI with date of HIV-diagnosis available, 55% were LT and 45% LP. Conclusion: LHI was highly prevalent in CCASAnet sites, mostly due to LT; the main risk factors associated were being male and older age. Earlier HIV-diagnosis and earlier treatment initiation are needed to maximize benefits from HAART in the region

    The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation

    Get PDF
    Horizontal gene transfer shapes the genomes of prokaryotes by allowing rapid acquisition of novel adaptive functions. Conjugation allows the broadest range and the highest gene transfer input per transfer event. While conjugative plasmids have been studied for decades, the number and diversity of integrative conjugative elements (ICE) in prokaryotes remained unknown. We defined a large set of protein profiles of the conjugation machinery to scan over 1,000 genomes of prokaryotes. We found 682 putative conjugative systems among all major phylogenetic clades and showed that ICEs are the most abundant conjugative elements in prokaryotes. Nearly half of the genomes contain a type IV secretion system (T4SS), with larger genomes encoding more conjugative systems. Surprisingly, almost half of the chromosomal T4SS lack co-localized relaxases and, consequently, might be devoted to protein transport instead of conjugation. This class of elements is preponderant among small genomes, is less commonly associated with integrases, and is rarer in plasmids. ICEs and conjugative plasmids in proteobacteria have different preferences for each type of T4SS, but all types exist in both chromosomes and plasmids. Mobilizable elements outnumber self-conjugative elements in both ICEs and plasmids, which suggests an extensive use of T4SS in trans. Our evolutionary analysis indicates that switch of plasmids to and from ICEs were frequent and that extant elements began to differentiate only relatively recently. According to the present results, ICEs are the most abundant conjugative elements in practically all prokaryotic clades and might be far more frequently domesticated into non-conjugative protein transport systems than previously thought. While conjugative plasmids and ICEs have different means of genomic stabilization, their mechanisms of mobility by conjugation show strikingly conserved patterns, arguing for a unitary view of conjugation in shaping the genomes of prokaryotes by horizontal gene transfer
    • …
    corecore