55 research outputs found

    Extraction of high-quality DNA from ethanol-preserved tropical plant tissues

    Get PDF
    BACKGROUND: Proper conservation of plant samples, especially during remote field collection, is essential to assure quality of extracted DNA. Tropical plant species contain considerable amounts of secondary compounds, such as polysaccharides, phenols, and latex, which affect DNA quality during extraction. The suitability of ethanol (96% v/v) as a preservative solution prior to DNA extraction was evaluated using leaves of Jatropha curcas and other tropical species. RESULTS: Total DNA extracted from leaf samples stored in liquid nitrogen or ethanol from J. curcas and other tropical species (Theobroma cacao, Coffea arabica, Ricinus communis, Saccharum spp., and Solanum lycopersicon) was similar in quality, with high-molecular-weight DNA visualized by gel electrophoresis. DNA quality was confirmed by digestion with EcoRI or HindIII and by amplification of the ribosomal gene internal transcribed spacer region. Leaf tissue of J. curcas was analyzed by light and transmission electron microscopy before and after exposure to ethanol. Our results indicate that leaf samples can be successfully preserved in ethanol for long periods (30 days) as a viable method for fixation and conservation of DNA from leaves. The success of this technique is likely due to reduction or inactivation of secondary metabolites that could contaminate or degrade genomic DNA. CONCLUSIONS: Tissue conservation in 96% ethanol represents an attractive low-cost alternative to commonly used methods for preservation of samples for DNA extraction. This technique yields DNA of equivalent quality to that obtained from fresh or frozen tissue

    The role of the CNR1 gene in schizophrenia: a systematic review including unpublished data

    Get PDF
    Objective: Schizophrenia is a multifactorial disorder. It is known that a combination of extensive multiple common alleles may be involved in its etiology, each contributing with a small to moderate effect, and, possibly, some rare alleles with a much larger effect size. We aimed to perform a systematic review of association studies between schizophrenia (and its subphenotypes) and polymorphisms in the CNR1 gene, which encodes cannabinoid receptors classically implicated in schizophrenia pathophysiology, as well as to present unpublished results of an association study in a Brazilian population. Methods: Two reviewers independently searched for eligible studies and extracted outcome data using a structured form. Papers were retrieved from PubMed and ISI Web of Knowledge using the search term schizophrenia in combination with CNR1 or CB1 or cannabinoid receptor. Twenty-four articles met our inclusion criteria. We additionally present data from a study of our own comparing 182 patients with schizophrenia and 244 healthy controls. Results: No consistent evidence is demonstrated. Conclusion: Some seemingly positive association studies stress the need for further investigations of the possible role of endocannabinoid genetics in schizophrenia.Fundacao de Amparo e Pesquisa do Estado de Sao Paulo (FAPESP) [2010/08968-6, 2011/50740-5, 2011/00030-1]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)FAPESPCNPqCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Fundacao SafraFundacao ABADSUniv Fed Sao Paulo UNIFESP, Dept Psiquiatria, Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Lab Interdisciplinar Neurociencias Clin LiNC, Sao Paulo, SP, BrazilIrmandade Santa Casa Misericordia Sao Paulo, Dept Psiquiatria, Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Dept Morfol & Genet, Sao Paulo, SP, BrazilUniv Fed Sao Paulo UNIFESP, Dept Psiquiatria, Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Lab Interdisciplinar Neurociencias Clin LiNC, Sao Paulo, SP, BraziWeb of Scienc

    Gene expression alterations related to mania and psychosis in peripheral blood of patients with a first episode of psychosis

    Get PDF
    Psychotic disorders affect similar to 3% of the general population and are among the most severe forms of mental diseases. In early stages of psychosis, clinical aspects may be difficult to distinguish from one another. Undifferentiated psychopathology at the first-episode of psychosis (FEP) highlights the need for biomarkers that can improve and refine differential diagnosis. We investigated gene expression differences between patients with FEP-schizophrenia spectrum (SCZN = 53) or FEP-Mania (BDN = 16) and healthy controls (N = 73). We also verified whether gene expression was correlated to severity of psychotic, manic, depressive symptoms and/or functional impairment. All participants were antipsychotic-naive. After the psychiatric interview, blood samples were collected and the expression of 12 psychotic-disorder-related genes was evaluated by quantitative PCR. AKT1 and DICER1 expression levels were higher in BD patients compared with that in SCZ patients and healthy controls, suggesting that expression of these genes is associated more specifically to manic features. Furthermore, MBP and NDEL1 expression levels were higher in SCZ and BD patients than in healthy controls, indicating that these genes are psychosis related (independent of diagnosis). No correlation was found between gene expression and severity of symptoms or functional impairment. Our findings suggest that genes related to neurodevelopment are altered in psychotic disorders, and some might support the differential diagnosis between schizophrenia and bipolar disorder, with a potential impact on the treatment of these disorders.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Fed Sao Paulo, Dept Psychiat, Sao Paulo, BrazilIrmandade Santa Casa Misericordia Sao Paulo, Dept Psychiat, Sao Paulo, BrazilUniv Fed Sao Paulo, Div Genet, Dept Morphol & Genet, Sao Paulo, BrazilUniv Fed Sao Paulo, LiNC Interdisciplinary Lab Clin Neurosci, Sao Paulo, BrazilUniv Fed ABC, Ctr Math Computat & Cognit, Sao Paulo, BrazilUniv Fed Sao Paulo, Dept Pharmacol, Sao Paulo, BrazilUniv Fed Sao Paulo, Res Grp Behav & Mol Neurosci Bipolar Disorder, Sao Paulo, BrazilDepartment of Psychiatry, Universidade Federal de São Paulo, São Paulo, BrazilGenetics Division, Department of Morphology and Genetics, UNIFESP, São Paulo, BrazilLiNC—Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP, São Paulo, BrazilDepartment of Pharmacology, UNIFESP, São Paulo, BrazilResearch Group in Behavioral and Molecular Neuroscience of Bipolar Disorder, UNIFESP, São Paulo, BrazilFAPESP: 2010/08968-6FAPESP: 2011/50740-5FAPESP: 2014/50830-2FAPESP: 2014/07280-1FAPESP: 2013/10498-6FAPESP: 2012/12686-1Web of Scienc

    The role of the CNR1 gene in schizophrenia: a systematic review including unpublished data

    Get PDF
    Objective: Schizophrenia is a multifactorial disorder. It is known that a combination of extensive multiple common alleles may be involved in its etiology, each contributing with a small to moderate effect, and, possibly, some rare alleles with a much larger effect size. We aimed to perform a systematic review of association studies between schizophrenia (and its subphenotypes) and polymorphisms in the CNR1 gene, which encodes cannabinoid receptors classically implicated in schizophrenia pathophysiology, as well as to present unpublished results of an association study in a Brazilian population. Methods: Two reviewers independently searched for eligible studies and extracted outcome data using a structured form. Papers were retrieved from PubMed and ISI Web of Knowledge using the search term schizophrenia in combination with CNR1 or CB1 or cannabinoid receptor. Twenty-four articles met our inclusion criteria. We additionally present data from a study of our own comparing 182 patients with schizophrenia and 244 healthy controls. Results: No consistent evidence is demonstrated. Conclusion: Some seemingly positive association studies stress the need for further investigations of the possible role of endocannabinoid genetics in schizophrenia

    Genetic characterization of cassava (Manihot esculenta) landraces in Brazil assessed with simple sequence repeats

    Get PDF
    Based on nine microsatellite loci, the aim of this study was to appraise the genetic diversity of 42 cassava (Manihot esculenta) landraces from selected regions in Brazil, and examine how this variety is distributed according to origin in several municipalities in the states of Minas Gerais, São Paulo, Mato Grosso do Sul, Amazonas and Mato Grosso. High diversity values were found among the five above-mentioned regions, with 3.3 alleles per locus on an average, a high percentage of polymorphic loci varying from 88.8% to 100%, an average of 0.265 for observed heterozygosity and 0.570 for gene diversity. Most genetic diversity was concentrated within the regions themselves (HS = 0.52). Cluster analysis and principal component based scatter plotting showed greater similarity among landraces from São Paulo, Mato Grosso do Sul and Amazonas, whereas those from Minas Gerais were clustered into a sub-group within this group. The plants from Mato Grosso, mostly collected in the municipality of General Carneiro, provided the highest differentiation. The migration of human populations is one among the possible reasons for this closer resemblance or greater disparity among plants from the various regions

    Probing dark matter with star clusters: a dark matter core in the ultra-faint dwarf Eridanus II

    Get PDF
    We present a new technique to probe the central dark matter (DM) density profile of galaxies that harnesses both the survival and observed properties of star clusters. As a first application, we apply our method to the `ultra-faint' dwarf Eridanus II (Eri II) that has a lone star cluster ~45 pc from its centre. Using a grid of collisional NN-body simulations, incorporating the effects of stellar evolution, external tides and dynamical friction, we show that a DM core for Eri II naturally reproduces the size and the projected position of its star cluster. By contrast, a dense cusped galaxy requires the cluster to lie implausibly far from the centre of Eri II (>1 kpc), with a high inclination orbit that must be observed at a particular orbital phase. Our results, therefore, favour a dark matter core. This implies that either a cold DM cusp was `heated up' at the centre of Eri II by bursty star formation, or we are seeing an evidence for physics beyond cold DM.Comment: Minor changes to match the version in press in MNRA

    Country-level gender inequality is associated with structural differences in the brains of women and men

    Full text link
    Gender inequality across the world has been associated with a higher risk to mental health problems and lower academic achievement in women compared to men. We also know that the brain is shaped by nurturing and adverse socio-environmental experiences. Therefore, unequal exposure to harsher conditions for women compared to men in gender-unequal countries might be reflected in differences in their brain structure, and this could be the neural mechanism partly explaining women's worse outcomes in gender-unequal countries. We examined this through a random-effects meta-analysis on cortical thickness and surface area differences between adult healthy men and women, including a meta-regression in which country-level gender inequality acted as an explanatory variable for the observed differences. A total of 139 samples from 29 different countries, totaling 7,876 MRI scans, were included. Thickness of the right hemisphere, and particularly the right caudal anterior cingulate, right medial orbitofrontal, and left lateral occipital cortex, presented no differences or even thicker regional cortices in women compared to men in gender-equal countries, reversing to thinner cortices in countries with greater gender inequality. These results point to the potentially hazardous effect of gender inequality on women's brains and provide initial evidence for neuroscience-informed policies for gender equality

    Country-level gender inequality is associated with structural differences in the brains of women and men

    Get PDF
    男女間の不平等と脳の性差 --男女間の不平等は脳構造の性差と関連する--. 京都大学プレスリリース. 2023-05-10.Gender inequality across the world has been associated with a higher risk to mental health problems and lower academic achievement in women compared to men. We also know that the brain is shaped by nurturing and adverse socio-environmental experiences. Therefore, unequal exposure to harsher conditions for women compared to men in gender-unequal countries might be reflected in differences in their brain structure, and this could be the neural mechanism partly explaining women’s worse outcomes in gender-unequal countries. We examined this through a random-effects meta-analysis on cortical thickness and surface area differences between adult healthy men and women, including a meta-regression in which country-level gender inequality acted as an explanatory variable for the observed differences. A total of 139 samples from 29 different countries, totaling 7, 876 MRI scans, were included. Thickness of the right hemisphere, and particularly the right caudal anterior cingulate, right medial orbitofrontal, and left lateral occipital cortex, presented no differences or even thicker regional cortices in women compared to men in gender-equal countries, reversing to thinner cortices in countries with greater gender inequality. These results point to the potentially hazardous effect of gender inequality on women’s brains and provide initial evidence for neuroscience-informed policies for gender equality
    corecore