27 research outputs found

    Freedom of religion under the European Convention on Human Rights: Foreshadowing interpretative dilemmas

    Get PDF
    This chapter focuses on those provisions of the European Convention on Human Rights (ECHR) most clearly relevant to freedom of religion: Article 9, and Article 2 of the First Protocol. These provisions are placed in context, both in terms of the development of freedom of religion at the international level, and in terms of the history of the drafting of the provisions. The exposition function was particularly important in a text on freedom of religion or belief. It was the first full-length text providing a sustained consideration of freedom of religion under the ECHR, as opposed to in international law more generally. A lack of sympathy, or perhaps better put, a failure of judicial imagination when considering the position of atheists within a religious rights regime, materialised in Lautsi v Italy. Eweida removed the initial hurdle in making a religion or belief claim, a second hurdle is immediately encountered: the margin of appreciation

    Pushing the boundaries of lithium battery research with atomistic modelling on different scales

    Get PDF
    Computational modelling is a vital tool in the research of batteries and their component materials. Atomistic models are key to building truly physics-based models of batteries and form the foundation of the multiscale modelling chain, leading to more robust and predictive models. These models can be applied to fundamental research questions with high predictive accuracy. For example, they can be used to predict new behaviour not currently accessible by experiment, for reasons of cost, safety, or throughput. Atomistic models are useful for quantifying and evaluating trends in experimental data, explaining structure-property relationships, and informing materials design strategies and libraries. In this review, we showcase the most prominent atomistic modelling methods and their application to electrode materials, liquid and solid electrolyte materials, and their interfaces, highlighting the diverse range of battery properties that can be investigated. Furthermore, we link atomistic modelling to experimental data and higher scale models such as continuum and control models. We also provide a critical discussion on the outlook of these materials and the main challenges for future battery research

    From Atoms to Cells:Multiscale Modeling of LiNi<sub>x</sub>Mn<sub>y</sub>Co<sub>z</sub>O<sub>2</sub>Cathodes for Li-Ion Batteries

    Get PDF
    First-generation cathodes for commercial lithium-ion batteries are based on layered transition-metal oxides. Research on ternary compounds, such as LiCoO2, evolved into mixed-metal systems, notably Li(Ni,Mn,Co)O2 (NMCs), which allows significant tuning of the physical properties. Despite their widespread application in commercial devices, the fundamental understanding of NMCs is incomplete. Here, we review the latest insights from multiscale modeling, bridging between the redox phenomena that occur at an atomistic level to the transport of ions and electrons across an operating device. We discuss changes in the electronic and vibrational structures through the NMC compositional space and how these link to continuum models of electrochemical charge-discharge cycling. Finally, we outline the remaining challenges for predictive models of high-performance batteries, including capturing the relevant device bottlenecks and chemical degradation processes, such as oxygen evolution. </p

    Adiabatic scaling relations of galaxy clusters

    Full text link
    The aim of the present work is to show that, contrary to popular belief, galaxy clusters are **not** expected to be self-similar, even when the only energy sources available are gravity and shock-wave heating. In particular, we investigate the scaling relations between mass, luminosity and temperature of galaxy groups and clusters in the absence of radiative processes. Theoretical expectations are derived from a polytropic model of the intracluster medium and compared with the results of high-resolution adiabatic gasdynamical simulations. It is shown that, in addition to the well-known relation between the mass and concentration of the dark matter halo, the effective polytropic index of the gas also varies systematically with cluster mass, and therefore neither the dark matter nor the gas profiles are exactly self-similar. It is remarkable, though, that the effects of concentration and polytropic index tend to cancel each other, leading to scaling relations whose logarithmic slopes roughly match the predictions of the most basic self-similar models. We provide a phenomenological fit to the relation between polytropic index and concentration, as well as a self-consistent scheme to derive the non-linear scaling relations expected for any cosmology and the best-fit normalizations of the M-T, L-T and F-T relations appropriate for a Lambda-CDM universe. The predicted scaling relations reproduce observational data reasonably well for massive clusters, where the effects of cooling and star formation are expected to play a minor role.Comment: 12 pages, 5 figures, accepted by MNRA

    The radial structure of galaxy groups and clusters

    Full text link
    Simple self-consistent models of galaxy groups and clusters are tested against the results of high-resolution adiabatic gasdynamical simulations. We investigate two models based on the existence of a 'universal' dark matter density profile and two versions of the beta-model. The mass distribution of relaxed clusters can be fitted by phenomenological formulae proposed in the literature. Haloes that have experienced a recent merging event are systematically less concentrated and show steeper profiles than relaxed objects near the centre. The hot X-ray emitting gas is found to be in approximate hydrostatic equilibrium with the dark matter potential, and it is well described by a polytropic equation of state. Analytic formulae for the gas density and temperature can be derived from these premises. Though able to reproduce the X-ray surface brightness, the beta-model is shown to provide a poor description of our numerical clusters. We find strong evidence of a 'universal' temperature profile that decreases by a factor of 2-3 from the centre to the virial radius, whereas baryon fraction and entropy are monotonically increasing functions. Numerical resolution and entropy conservation play a key role in the shapes of the profiles at small radii.Comment: 16 pages, 19 figures, minor changes to match published versio

    The Shapes of BCGs and normal Ellipticals in Nearby Clusters

    Get PDF
    We compare the apparent axial ratio distributions of Brightest Cluster Galaxies (BCGs) and normal ellipticals (Es) in our sample of 75 galaxy clusters from the WINGS survey. Most BCGs in our clusters (69%) are classified as cD galaxies. The sample of cDs has been completed by 14 additional cDs (non-BCGs) we found in our clusters. We find that: (i) Es have triaxial shape, the triaxiality sharing almost evenly the intrinsic axial ratios parameter space, with a weak preference for prolateness; (ii) the BCGs have triaxial shape as well. However, their tendence towards prolateness is much stronger than in the case of Es. Such a strong prolateness appears entirely due to the sizeable (dominant) component of cDs inside the WINGS sample of BCGs. In fact, while the 'normal'(non-cD) BCGs do not differ from Es, as far as the shape distribution is concerned, the axial ratio distribution of BCG_cD galaxies is found to support quite prolate shapes; (iii) our result turns out to be strongly at variance with the only similar, previous analysis by Ryden et al.(1993)(RLP93), where BCGs and Es were found to share the same axial ratio distribution; (iv) our data suggest that the above discrepancy is mainly caused by the different criteria that RLP93 and ourselves use to select the cluster samples, coupled with a preference of cDs to reside in powerful X-ray emitting clusters; (v) the GIF2 N-body results suggest that the prolateness of the BCGs (in particular the cDs) could reflect the shape of the associated dark matter halos.Comment: 18 pages, 9 figures, 2 tables. Accepted for publication in MNRA

    Physical viscosity in smoothed particle hydrodynamics simulations of galaxy clusters

    Get PDF
    Most hydrodynamical simulations of galaxy cluster formation carried out to date have tried to model the cosmic gas as an ideal, inviscid fluid, where only a small amount of (unwanted) numerical viscosity is present, arising from practical limitations of the numerical method employed, and with a strength that depends on numerical resolution. However, the physical viscosity of the gas in hot galaxy clusters may in fact not be negligible, suggesting that a self-consistent treatment that accounts for the internal gas friction would be more appropriate. To allow such simulations using the smoothed particle hydrodynamics (SPH) method, we derive a novel SPH formulation of the Navier-Stokes and general heat transfer equations and implement them in the GADGET-2 code. We include both shear and bulk viscosity stress tensors, as well as saturation criteria that limit viscous stress transport where appropriate. Adopting Braginskii's parameterization for the shear viscosity of hot gaseous plasmas, we then study the influence of viscosity on the interplay between AGN-inflated bubbles and the surrounding intracluster medium (ICM). We find that certain bubble properties like morphology, maximum clustercentric radius reached, or survival time depend quite sensitively on the assumed level of viscosity. Interestingly, the sound waves launched into the ICM by the bubble injection are damped by physical viscosity, establishing a non-local heating process. Finally, we carry out cosmological simulations of galaxy cluster formation with a viscous intracluster medium. Viscosity modifies the dynamics of mergers and the motion of substructures through the cluster atmosphere. Substructures are generally more efficiently stripped of their gas, leading to prominent long gaseous tails behind infalling massive halos. (Abridged)Comment: 24 pages, 13 figures, minor revisions, MNRAS accepte
    corecore