78 research outputs found

    Conservative treatment of a comminuted cervical fracture in a racehorse

    Get PDF
    The 'classical' or 'Hangman' neck fracture involves the odontoid peg (process) of the second cervical vertebra (C2), and is described as an axial, dens or odontoid peg fracture in both the veterinary and human literature. Possible surgical treatment in both foals and adult horses requires a technique that allows decompression, anatomical alignment and stabilisation of the odontoid fracture. A limited number of surgical cases in foals have been reported in literature, but never in an adult horse. A mature Irish Thoroughbred racehorse was diagnosed with a type 2a odontoid peg fracture. Clinical signs included reluctance to move the head and neck, a left hind limb lameness and a neurological status of grade 2. The horse was treated conservatively and raced successfully five months after the diagnosed injury

    Germline polymorphisms in an enhancer of PSIP1 are associated with progression-free survival in epithelial ovarian cancer.

    Get PDF
    Women with epithelial ovarian cancer (EOC) are usually treated with platinum/taxane therapy after cytoreductive surgery but there is considerable inter-individual variation in response. To identify germline single-nucleotide polymorphisms (SNPs) that contribute to variations in individual responses to chemotherapy, we carried out a multi-phase genome-wide association study (GWAS) in 1,244 women diagnosed with serous EOC who were treated with the same first-line chemotherapy, carboplatin and paclitaxel. We identified two SNPs (rs7874043 and rs72700653) in TTC39B (best P=7x10-5, HR=1.90, for rs7874043) associated with progression-free survival (PFS). Functional analyses show that both SNPs lie in a putative regulatory element (PRE) that physically interacts with the promoters of PSIP1, CCDC171 and an alternative promoter of TTC39B. The C allele of rs7874043 is associated with poor PFS and showed increased binding of the Sp1 transcription factor, which is critical for chromatin interactions with PSIP1. Silencing of PSIP1 significantly impaired DNA damage-induced Rad51 nuclear foci and reduced cell viability in ovarian cancer lines. PSIP1 (PC4 and SFRS1 Interacting Protein 1) is known to protect cells from stress-induced apoptosis, and high expression is associated with poor PFS in EOC patients. We therefore suggest that the minor allele of rs7874043 confers poor PFS by increasing PSIP1 expression.This project has been supported by a grant from Cancer Australia. The Mayo Clinic GWAS was supported by R01CA114343 (Haplotype-based genome screen for ovarian cancer loci). The Ovarian Cancer Association Consortium is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith. The AOCS was supported by the U.S. Army Medical Research and Materiel Command under DAMD17-01-1-0729, the National Health and Medical Research Council (NHMRC) of Australia (grants 400281, 400413), Cancer Council Victoria, Cancer Council Queensland, Cancer Council New South Wales, Cancer Council South Australia, The Cancer Foundation of Western Australia, and Cancer Council Tasmania. G. Chenevix-Trench is a Senior Principal Research fellow of the NHMRC. Y. Lu is funded by NHMRC grant 496675, S. MacGregor is supported by an NHMRC career development award, S. Edwards and J. French are supported by Fellowships from the National Breast Cancer Foundation (NBCF) Australia. The QIMR Berghofer groups were supported by NHMRC project grants (1051698 to SM and 1058415 to SLE and JDF) and a Weekend to End Women’s Cancer Research Grant (to SLE). A deFazio is funded by the University of Sydney Cancer Research Fund and A deFazio and PR Harnett are funded by the Cancer Institute NSW through the Sydney-West Translational Cancer Research Centre. B. Gao is supported by NHMRC and Cancer Institute NSW scholarship. KBM and MO’R are funded by CR-UK. The Bavarian study (BAV) was supported by ELAN Funds of the University of Erlangen-Nuremberg. HSK would like to thank Ira Schwaab for her tireless work on sample preparation. The Belgian study (BEL) was funded by Nationaal Kankerplan and we would like to thank Gilian Peuteman, Thomas Van Brussel and Dominiek Smeets for technical assistance. The Japanese study (JPN) was funded by a Grant-in-Aid for the Third Term Comprehensive 10-Year Strategy for Cancer Control from the Ministry of Health, Labour and Welfare. The International Collaborative Ovarian Neoplasm study (ICON)7 trial team would like to thank the Medical Research Council (MRC) Clinical Trial Unit (CTU) at the University of London (UCL), the ICON7 Translational Research Sub-group, and the University of Leeds for their work on the coordination of samples and data from the ICON7 trial. The LAX study (Women’s Cancer Program) was supported by the American Cancer Society Early Detection Professorship (120950-SIOP-06-258-06-COUN) and Entertainment Industry Foundation. Funding for MALOVA (MAL) was provided by research grant RO1 CA 61107 from the National Cancer Institute, Bethesda, MD; research grant 94 222 52 from the Danish Cancer Society, Copenhagen, Denmark; and the Mermaid I project. The Mayo Clinic study (MAYO) was supported by R01 CA122443, P50 CA136393. The Oregon study (ORE) was funded by the Sherie Hildreth Ovarian Cancer Research Fund and the OHSU Foundation. We would like to thank all members of Scottish Gynaecological Clinical Trials group and the SCOTROC1 investigators. SCOTROC1 (SRO) was funded by Cancer Research UK, and the SCOTROC biological studies were supported by Cancer Research UK (grant C536/A6689). RSH receives support from NIH/NIGMS grant K08GM089941, NIH/NCI grant R21 CA139278, NIH/NIGMS grant UO1GM61393, University of Chicago Cancer Center Support Grant (#P30 CA14599) and Breast Cancer SPORE Career Development Award.This is the final version of the article. It first appeared from Impact Journals via http://dx.doi.org/10.18632/oncotarget.704

    Common variants at theCHEK2gene locus and risk of epithelial ovarian cancer

    Get PDF
    Genome-wide association studies have identified 20 genomic regions associated with risk of epithelial ovarian cancer (EOC), but many additional risk variants may exist. Here, we evaluated associations between common genetic variants [single nucleotide polymorphisms (SNPs) and indels] in DNA repair genes and EOC risk. We genotyped 2896 common variants at 143 gene loci in DNA samples from 15 397 patients with invasive EOC and controls. We found evidence of associations with EOC risk for variants at FANCA, EXO1, E2F4, E2F2, CREB5 and CHEK2 genes (P ≤ 0.001). The strongest risk association was for CHEK2 SNP rs17507066 with serous EOC (P = 4.74 x 10(-7)). Additional genotyping and imputation of genotypes from the 1000 genomes project identified a slightly more significant association for CHEK2 SNP rs6005807 (r (2) with rs17507066 = 0.84, odds ratio (OR) 1.17, 95% CI 1.11-1.24, P = 1.1×10(-7)). We identified 293 variants in the region with likelihood ratios of less than 1:100 for representing the causal variant. Functional annotation identified 25 candidate SNPs that alter transcription factor binding sites within regulatory elements active in EOC precursor tissues. In The Cancer Genome Atlas dataset, CHEK2 gene expression was significantly higher in primary EOCs compared to normal fallopian tube tissues (P = 3.72×10(-8)). We also identified an association between genotypes of the candidate causal SNP rs12166475 (r (2) = 0.99 with rs6005807) and CHEK2 expression (P = 2.70×10(-8)). These data suggest that common variants at 22q12.1 are associated with risk of serous EOC and CHEK2 as a plausible target susceptibility gene.Other Research Uni

    rs495139 in the TYMS-ENOSF1 Region and Risk of Ovarian Carcinoma of Mucinous Histology.

    Get PDF
    Thymidylate synthase (TYMS) is a crucial enzyme for DNA synthesis. TYMS expression is regulated by its antisense mRNA, ENOSF1. Disrupted regulation may promote uncontrolled DNA synthesis and tumor growth. We sought to replicate our previously reported association between rs495139 in the TYMS-ENOSF1 3' gene region and increased risk of mucinous ovarian carcinoma (MOC) in an independent sample. Genotypes from 24,351 controls to 15,000 women with invasive OC, including 665 MOC, were available. We estimated per-allele odds ratios (OR) and 95% confidence intervals (CI) using unconditional logistic regression, and meta-analysis when combining these data with our previous report. The association between rs495139 and MOC was not significant in the independent sample (OR = 1.09; 95% CI = 0.97⁻1.22; p = 0.15; N = 665 cases). Meta-analysis suggested a weak association (OR = 1.13; 95% CI = 1.03⁻1.24; p = 0.01; N = 1019 cases). No significant association with risk of other OC histologic types was observed (p = 0.05 for tumor heterogeneity). In expression quantitative trait locus (eQTL) analysis, the rs495139 allele was positively associated with ENOSF1 mRNA expression in normal tissues of the gastrointestinal system, particularly esophageal mucosa (r = 0.51, p = 1.7 × 10-28), and nonsignificantly in five MOC tumors. The association results, along with inconclusive tumor eQTL findings, suggest that a true effect of rs495139 might be small

    Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer.

    Get PDF
    BACKGROUND: Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and, thus, variants in genes encoding Treg cell immune molecules could be associated with ovarian cancer. METHODS: In a population of 15,596 epithelial ovarian cancer (EOC) cases and 23,236 controls, we measured genetic associations of 1,351 SNPs in Treg cell pathway genes with odds of ovarian cancer and tested pathway and gene-level associations, overall and by histotype, for the 25 genes, using the admixture likelihood (AML) method. The most significant single SNP associations were tested for correlation with expression levels in 44 ovarian cancer patients. RESULTS: The most significant global associations for all genes in the pathway were seen in endometrioid ( p = 0.082) and clear cell ( p = 0.083), with the most significant gene level association seen with TGFBR2 ( p = 0.001) and clear cell EOC. Gene associations with histotypes at p < 0.05 included: IL12 ( p = 0.005 and p = 0.008, serous and high-grade serous, respectively), IL8RA ( p = 0.035, endometrioid and mucinous), LGALS1 ( p = 0.03, mucinous), STAT5B ( p = 0.022, clear cell), TGFBR1 ( p = 0.021 endometrioid) and TGFBR2 ( p = 0.017 and p = 0.025, endometrioid and mucinous, respectively). CONCLUSIONS: Common inherited gene variation in Treg cell pathways shows some evidence of germline genetic contribution to odds of EOC that varies by histologic subtype and may be associated with mRNA expression of immune-complex receptor in EOC patients

    Identification of six new susceptibility loci for invasive epithelial ovarian cancer.

    Get PDF
    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.COGS project is funded through a European Commission's Seventh Framework Programme grant (agreement number 223175 ] HEALTH ]F2 ]2009 ]223175). The CIMBA data management and data analysis were supported by Cancer Research.UK grants 12292/A11174 and C1287/A10118. The Ovarian Cancer Association Consortium is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07). The scientific development and funding for this project were in part supported by the US National Cancer Institute GAME ]ON Post ]GWAS Initiative (U19 ]CA148112). This study made use of data generated by the Wellcome Trust Case Control consortium. Funding for the project was provided by the Wellcome Trust under award 076113. The results published here are in part based upon data generated by The Cancer Genome Atlas Pilot Project established by the National Cancer Institute and National Human Genome Research Institute (dbGap accession number phs000178.v8.p7). The cBio portal is developed and maintained by the Computational Biology Center at Memorial Sloan ] Kettering Cancer Center. SH is supported by an NHMRC Program Grant to GCT. Details of the funding of individual investigators and studies are provided in the Supplementary Note. This study made use of data generated by the Wellcome Trust Case Control consortium, funding for which was provided by the Wellcome Trust under award 076113. The results published here are, in part, based upon data generated by The Cancer Genome Atlas Pilot Project established by the National Cancerhttp://dx.doi.org/10.1038/ng.3185This is the Author Accepted Manuscript of 'Identification of six new susceptibility loci for invasive epithelial ovarian cancer' which was published in Nature Genetics 47, 164–171 (2015) © Nature Publishing Group - content may only be used for academic research

    Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Get PDF
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC

    The Innovative Performance of China's National Innovation System

    Full text link

    Collaborating for Innovation: the socialised management of knowledge

    Get PDF
    Although the importance of diverse knowledge is widely recognised for open innovation, there may be a gap in our understanding of the social processes that shape how collaborators engage in knowledge exchange. This social gap may be significant because of the powerful, but largely unexplained, role attributed to trust as a social artefact. Moreover, we see trust as a process and that different types of trust are involved in the collaborative process. Thus, this paper uses a qualitative methodology to capture the experiences of innovation collaborators. As explanation of the dynamic interplays of knowledge and trust, we offer a description of phases in the process. Our analysis finds that the relationship moves from transactional to social. The early phases are characterised by technical knowledge, but the later and mature phases are identified with knowledge of the person and by personal trust. The success of innovation is a result of relationships with augmented trust. We found that a fabric of trust is woven from the weft of professional knowledge and the warp of personal knowledge to support innovation. We propose that this developing of relationships might be conceived as becoming more open in the sense of sharing with one another. If so, we seem to have described and offered a social dimension of open innovation
    corecore