6 research outputs found

    Incidence of Dyspnea and Assessment of Cardiac and Pulmonary Function in Patients With Stable Coronary Artery Disease Receiving Ticagrelor, Clopidogrel, or Placebo in the ONSET/OFFSET Study

    Get PDF
    ObjectivesWe prospectively assessed cardiac and pulmonary function in patients with stable coronary artery disease (CAD) treated with ticagrelor, clopidogrel, or placebo in the ONSET/OFFSET (A Multi-Centre Randomised, Double-Blind, Double-Dummy Parallel Group Study of the Onset and Offset of Antiplatelet Effects of AZD6140 Compared With Clopidogrel and Placebo With Aspirin as Background Therapy in Patients With Stable Coronary Artery Disease) study.BackgroundTicagrelor reduces cardiovascular events more effectively than clopidogrel in patients with acute coronary syndromes. Dyspnea develops in some patients treated with ticagrelor, and it is not known whether this is associated with changes in cardiac or pulmonary function.MethodsIn all, 123 stable aspirin-treated CAD patients randomly received either ticagrelor (180 mg load, then 90 mg twice daily; n = 57), clopidogrel (600 mg load, then 75 mg daily; n = 54), or placebo (n = 12) for 6 weeks in a double-blind, double-dummy design. Electrocardiography, echocardiography, serum N-terminal pro-brain natriuretic peptide, and pulmonary function tests were performed before (baseline) and 6 weeks after drug administration and/or after development of dyspnea.ResultsAfter drug administration, dyspnea was reported by 38.6%, 9.3%, and 8.3% of patients in the ticagrelor, clopidogrel, and placebo groups, respectively (p < 0.001). Most instances were mild and/or lasted <24 h, although 3 patients discontinued ticagrelor because of dyspnea. Eight of 22 and 17 of 22 ticagrelor-treated patients experiencing dyspnea did so within 24 h and 1 week, respectively, after drug administration. In all treatment groups, and in ticagrelor-treated patients with dyspnea, there were no significant changes between baseline and 6 weeks in any of the cardiac or pulmonary function parameters.ConclusionsDyspnea is commonly associated with ticagrelor therapy, but was not associated in this study with any adverse change in cardiac or pulmonary function. (A Multi-Centre Randomised, Double-Blind, Double-Dummy Parallel Group Study of the Onset and Offset of Antiplatelet Effects of AZD6140 Compared With Clopidogrel and Placebo With Aspirin as Background Therapy in Patients With Stable Coronary Artery Disease [ONSET/OFFSET]; NCT00528411

    Prevalence and architecture of de novo mutations in developmental disorders.

    Get PDF
    The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year

    Heterozygous Variants in KMT2E Cause a Spectrum of Neurodevelopmental Disorders and Epilepsy.

    Get PDF
    We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Platelet P2Y12 Inhibitors Reduce Systemic Inflammation and Its Prothrombotic Effects in an Experimental Human Model

    Get PDF
    Objective—Clinical studies suggest that platelet P2Y12 inhibitors reduce mortality from sepsis, although the underlying mechanisms have not been clearly defined in vivo. We hypothesized that P2Y12 inhibitors may improve survival from sepsis by suppressing systemic inflammation and its prothrombotic effects. We therefore determined whether clopidogrel and the novel, more potent P2Y12 inhibitor, ticagrelor, modify these responses in an experimental human model. Approach and Results—We randomized 30 healthy volunteers to ticagrelor (n=10), clopidogrel (n=10), or no antiplatelet medication (controls; n=10). We examined the effect of P2Y12 inhibition on systemic inflammation, which was induced by intravenous injection of Escherichia coli endotoxin. Both P2Y12 inhibitors significantly reduced platelet–monocyte aggregate formation and peak levels of major proinflammatory cytokines, including tumor necrosis factor α, interleukin-6, and chemokine (C–C motif) ligand 2. In contrast to clopidogrel, ticagrelor also significantly reduced peak levels of IL-8 and growth colony-stimulating factor and increased peak levels of the anti-inflammatory cytokine IL-10. In addition, ticagrelor altered leukocyte trafficking. Both P2Y12 inhibitors suppressed D-dimer generation and scanning electron microscopy revealed that ticagrelor also suppressed prothrombotic changes in fibrin clot ultrastructure. Conclusions—Potent inhibition of multiple inflammatory and prothrombotic mechanisms by P2Y12 inhibitors demonstrates critical importance of platelets as central orchestrators of systemic inflammation induced by bacterial endotoxin. This provides novel mechanistic insight into the lower mortality associated with P2Y12 inhibitors in patients with sepsis in clinical studies

    Author Correction: CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language

    Get PDF
    The original version of this Article contained an error in the spelling of the author Laurence Faivre, which was incorrectly given as Laurence Faive. This has now been corrected in both the PDF and HTML versions of the Article
    corecore