254 research outputs found

    Two distinct signalling cascades target the NF-κB regulatory factor c-IAP1 for degradation

    Get PDF
    c-IAP1 (cellular inhibitor of apoptosis 1) has recently emerged as a negative regulator of the non-canonical NF-κB (nuclear factor κB) signalling cascade. Whereas synthetic IAP inhibitors have been shown to trigger the autoubiquitination and degradation of c-IAP1, less is known about the physiological mechanisms by which c-IAP1 stability is regulated. In the present paper, we describe two distinct cellular processes that lead to the targeted loss of c-IAP1. Recruitment of a TRAF2 (tumour necrosis factor receptor-associated factor 2)–c-IAP1 complex to the cytoplasmic domain of the Hodgkin's/anaplastic large-cell lymphoma-associated receptor, CD30, leads to the targeting and degradation of the TRAF2–c-IAP1 heterodimer through a mechanism requiring the RING (really interesting new gene) domain of TRAF2, but not c-IAP1. In contrast, the induced autoubiquitination of c-IAP1 by IAP antagonists causes the selective loss of c-IAP1, but not TRAF2, thereby releasing TRAF2. Thus c-IAP1 can be targeted for degradation by two distinct processes, revealing the critical importance of this molecule as a regulator of numerous intracellular signalling cascades

    [68Ga]Ga-P16-093 as a PSMA-Targeted PET Radiopharmaceutical for Detection of Cancer: Initial Evaluation and Comparison with [68Ga]Ga-PSMA-11 in Prostate Cancer Patients Presenting with Biochemical Recurrence

    Get PDF
    Purpose: This study was undertaken to evaluate radiation dosimetry for the prostate-specific membrane antigen targeted [68Ga]Ga-P16-093 radiopharmaceutical, and to initially assess agent performance in positron emission tomography (PET) detection of the site of disease in prostate cancer patients presenting with biochemical recurrence. Procedures: Under IND 133,222 and an IRB-approved research protocol, we evaluated the biodistribution and pharmacokinetics of [68Ga]Ga-P16-093 with serial PET imaging following intravenous administration to ten prostate cancer patients with biochemical recurrence. The recruited subjects were all patients in whom a recent [68Ga]Ga-PSMA-11 PET/X-ray computed tomography (CT) exam had been independently performed under IND 131,806 to assist in decision-making with regard to their clinical care. Voided urine was collected from each subject at ~ 60 min and ~ 140 min post-[68Ga]Ga-P16-093 injection and assayed for Ga-68 content. Following image segmentation to extract tissue time-activity curves and corresponding cumulated activity values, radiation dosimetry estimates were calculated using IDAC Dose 2.1. The prior [68Ga]Ga-PSMA-11 PET/CT exam (whole-body PET imaging at 60 min post-injection, performed with contrast-enhanced diagnostic CT) served as a reference scan for comparison to the [68Ga]Ga-P16-093 findings. Results: [68Ga]Ga-P16-093 PET images at 60 min post-injection provided diagnostic information that appeared equivalent to the subject's prior [68Ga]Ga-PSMA-11 scan. With both radiopharmaceuticals, sites of tumor recurrence were found in eight of the ten patients, identifying 16 lesions. The site of recurrence was not detected with either agent for the other two subjects. Bladder activity was consistently lower with [68Ga]Ga-P16-093 than [68Ga]Ga-PSMA-11. The kidneys, spleen, salivary glands, and liver receive the highest radiation exposure from [68Ga]Ga-P16-093, with estimated doses of 1.7 × 10-1, 6.7 × 10-2, 6.5 × 10-2, and 5.6 × 10-2 mGy/MBq, respectively. The corresponding effective dose from [68Ga]Ga-P16-093 is 2.3 × 10-2 mSv/MBq. Conclusions: [68Ga]Ga-P16-093 provided diagnostic information that appeared equivalent to [68Ga]Ga-PSMA-11 in this limited series of ten prostate cancer patients presenting with biochemical recurrence, with the kidneys found to be the critical organ. Diminished tracer appearance in the urine represents a potential advantage of [68Ga]Ga-P16-093 over [68Ga]Ga-PSMA-11 for detection of lesions in the pelvis

    Skeletal Muscle Differentiation Evokes Endogenous XIAP to Restrict the Apoptotic Pathway

    Get PDF
    Myotube apoptosis occurs normally during muscle development and aging but it can lead to destruction of skeletal muscle in neuromuscular diseases. Therefore, understanding how myotube apoptosis is regulated is important for developing novel strategies for treatment of muscle loss. We investigated the regulation of apoptosis in skeletal muscle and report a striking increase in resistance to apoptosis following differentiation. We find mitotic C2C12 cells (myoblast-like cells) are sensitive to cytosolic cytochrome c microinjection. However, differentiated C2C12 cells (myotube-like cells) and primary myotubes are markedly resistant. This resistance is due to endogenous X-linked inhibitor of apoptotic protein (XIAP). Importantly, the selective difference in the ability of XIAP to block myotube but not myoblast apoptosis is not due to a change in XIAP but rather a decrease in Apaf-1 expression. This decrease in Apaf-1 links XIAP to caspase activation and death. Our findings suggest that in order for myotubes to die, they may degrade XIAP, functionally inactivate XIAP or upregulate Apaf-1. Importantly, we identify a role for endogenous Smac in overcoming XIAP to allow myotube death. However, in postmitotic cardiomyocytes, where XIAP also restricts apoptosis, endogenous Smac was not capable of overcoming XIAP to cause death. These results show that as skeletal muscle differentiate, they become resistant to apoptosis because of the ability of XIAP to regulate caspase activation. The increased restriction of apoptosis in myotubes is presumably important to ensure the long term survival of these postmitotic cells as they play a vital role in the physiology of organisms

    A Natural Combination Extract of Viscum album L. Containing Both Triterpene Acids and Lectins Is Highly Effective against AML In Vivo

    Get PDF
    Aqueous Viscum album L. extracts are widely used in complementary cancer medicine. Hydrophobic triterpene acids also possess anti-cancer properties, but due to their low solubility they do not occur in significant amounts in aqueous extracts. Using cyclodextrins we solubilised mistletoe triterpenes (mainly oleanolic acid) and investigated the effect of a mistletoe whole plant extract on human acute myeloid leukaemia cells in vitro, ex vivo and in vivo. Single Viscum album L. extracts containing only solubilised triterpene acids (TT) or lectins (viscum) inhibited cell proliferation and induced apoptosis in a dose-dependent manner in vitro and ex vivo. The combination of viscum and TT extracts (viscumTT) enhanced the induction of apoptosis synergistically. The experiments demonstrated that all three extracts are able to induce apoptosis via caspase-8 and -9 dependent pathways with down-regulation of members of the inhibitor of apoptosis and Bcl-2 families of proteins. Finally, the acute myeloid leukaemia mouse model experiment confirmed the therapeutic effectiveness of viscumTT-treatment resulting in significant tumour weight reduction, comparable to the effect in cytarabine-treated mice. These results suggest that the combination viscumTT may have a potential therapeutic value for the treatment AML

    cIAP-1 Controls Innate Immunity to C. pneumoniae Pulmonary Infection

    Get PDF
    The resistance of epithelial cells infected with Chlamydophila pneumoniae for apoptosis has been attributed to the induced expression and increased stability of anti-apoptotic proteins called inhibitor of apoptosis proteins (IAPs). The significance of cellular inhibitor of apoptosis protein-1 (cIAP-1) in C. pneumoniae pulmonary infection and innate immune response was investigated in cIAP-1 knockout (KO) mice using a novel non-invasive intra-tracheal infection method. In contrast to wildtype, cIAP-1 knockout mice failed to clear the infection from their lungs. Wildtype mice responded to infection with a strong inflammatory response in the lung. In contrast, the recruitment of macrophages was reduced in cIAP-1 KO mice compared to wildtype mice. The concentration of Interferon gamma (IFN-γ) was increased whereas that of Tumor Necrosis Factor (TNF-α) was reduced in the lungs of infected cIAP-1 KO mice compared to infected wildtype mice. Ex vivo experiments on mouse peritoneal macrophages and splenocytes revealed that cIAP-1 is required for innate immune responses of these cells. Our findings thus suggest a new immunoregulatory role of cIAP-1 in the course of bacterial infection

    Mechanism of the Interaction between the Intrinsically Disordered C-Terminus of the Pro-Apoptotic ARTS Protein and the Bir3 Domain of XIAP

    Get PDF
    ARTS (Sept4_i2) is a mitochondrial pro-apoptotic protein that functions as a tumor suppressor. Its expression is significantly reduced in leukemia and lymphoma patients. ARTS binds and inhibits XIAP (X-linked Inhibitor of Apoptosis protein) by interacting with its Bir3 domain. ARTS promotes degradation of XIAP through the proteasome pathway. By doing so, ARTS removes XIAP inhibition of caspases and enables apoptosis to proceed. ARTS contains 27 unique residues in its C-terminal domain (CTD, residues 248–274) which are important for XIAP binding. Here we characterized the molecular details of this interaction. Biophysical and computational methods were used to show that the ARTS CTD is intrinsically disordered under physiological conditions. Direct binding of ARTS CTD to Bir3 was demonstrated using NMR and fluorescence spectroscopy. The Bir3 interacting region in ARTS CTD was mapped to ARTS residues 266–274, which are the nine C-terminal residues in the protein. Alanine scan of ARTS 266–274 showed the importance of several residues for Bir3 binding, with His268 and Cys273 contributing the most. Adding a reducing agent prevented binding to Bir3. A dimer of ARTS 266–274 formed by oxidation of the Cys residues into a disulfide bond bound with similar affinity and was probably required for the interaction with Bir3. The detailed analysis of the ARTS – Bir3 interaction provides the basis for setting it as a target for anti cancer drug design: It will enable the development of compounds that mimic ARTS CTD, remove IAPs inhibition of caspases, and thereby induce apoptosis

    The Apoptosome: Emerging Insights and New Potential Targets for Drug Design

    Get PDF
    Apoptosis plays a crucial role in tissue homeostasis, development and many diseases. The relevance of Apaf1, the molecular core of apoptosome, has been underlined in mitochondria-dependent apoptosis, which according to a growing body of evidence, is involved in various pathologies where the equilibrium of life-and-death is dysregulated, such as heart attack, stroke, liver failure, cancer and autoimmune diseases. Consequently, great interest has emerged in devising therapeutic strategies for regulating the key molecules involved in the life-and-death decision. Here we review recent progress in apoptosis-based pharmacological therapies and, in particular, we point out a possible role of the apoptosome as an emerging and promising pharmacological target

    Mathematical Modelling of Cell-Fate Decision in Response to Death Receptor Engagement

    Get PDF
    Cytokines such as TNF and FASL can trigger death or survival depending on cell lines and cellular conditions. The mechanistic details of how a cell chooses among these cell fates are still unclear. The understanding of these processes is important since they are altered in many diseases, including cancer and AIDS. Using a discrete modelling formalism, we present a mathematical model of cell fate decision recapitulating and integrating the most consistent facts extracted from the literature. This model provides a generic high-level view of the interplays between NFκB pro-survival pathway, RIP1-dependent necrosis, and the apoptosis pathway in response to death receptor-mediated signals. Wild type simulations demonstrate robust segregation of cellular responses to receptor engagement. Model simulations recapitulate documented phenotypes of protein knockdowns and enable the prediction of the effects of novel knockdowns. In silico experiments simulate the outcomes following ligand removal at different stages, and suggest experimental approaches to further validate and specialise the model for particular cell types. We also propose a reduced conceptual model implementing the logic of the decision process. This analysis gives specific predictions regarding cross-talks between the three pathways, as well as the transient role of RIP1 protein in necrosis, and confirms the phenotypes of novel perturbations. Our wild type and mutant simulations provide novel insights to restore apoptosis in defective cells. The model analysis expands our understanding of how cell fate decision is made. Moreover, our current model can be used to assess contradictory or controversial data from the literature. Ultimately, it constitutes a valuable reasoning tool to delineate novel experiments
    corecore