1,980 research outputs found

    The instrumental polarization of the Nasmyth focus polarimetric differential imager NAOS/CONICA (NACO) at the VLT - Implications for time-resolved polarimetric measurements of Sgr A*

    Full text link
    We report on the results of calibrating and simulating the instrumental polarization properties of the ESO VLT adaptive optics camera system NAOS/CONICA (NACO) in the Ks-band. We use the Stokes/Mueller formalism for metallic reflections to describe the instrumental polarization. The model is compared to standard-star observations and time-resolved observations of bright sources in the Galactic center. We find the instrumental polarization to be highly dependent on the pointing position of the telescope and about 4% at maximum. We report a polarization angle offset of 13.28{\deg} due to a position angle offset of the half-wave plate that affects the calibration of NACO data taken before autumn 2009. With the new model of the instrumental polarization of NACO it is possible to measure the polarization with an accuracy of 1% in polarization degree. The uncertainty of the polarization angle is < 5{\deg} for polarization degrees > 4%. For highly sampled polarimetric time series we find that the improved understanding of the polarization properties gives results that are fully consistent with the previously used method to derive the polarization. The small difference between the derived and the previously employed polarization calibration is well within the statistical uncertainties of the measurements, and for Sgr A* they do not affect the results from our relativistic modeling of the accretion process.Comment: 16 pages, 15 figures, 5 tables, accepted by A&A on 2010 October 1

    Peering through the veil: near-infrared photometry and extinction for the Galactic nuclear star cluster

    Full text link
    The aims of this work are to provide accurate photometry in multiple near-infrared broadband filters, to determine the power-law index of the extinction-law toward the central parsec of the Galaxy, to provide measurements of the absolute extinction toward the Galactic center, and finally to measure the spatial variability of extinction on arcsecond scales.We use adaptive optics observations of the central parsec of the Milky Way. Absolute values for the extinction in the H, Ks, and L'-bands as well as of the power-law indices of the H to Ks and Ks to L' extinction-laws are measured based on the well-known properties of red clump stars. Extinction maps are derived based on H-Ks and Ks-L' colors. We present Ks-band photometry for ~7700 stars (H and L' photometry for a subset). From a number of recently published values we compute a mean distance of the Galactic center of R_0=8.03+-0.15 kpc, which has an uncertainty of just 2%. Based on this R_0 and on the RC method, we derive absolute mean extinction values toward the central parsec of the Galaxy of A_H=4.48+-0.13 mag, A_Ks=2.54+-0.12$ mag, and A_L'=1.27+-0.18 mag. We estimate values of the power-law indices of the extinction-law of alpha_{H-Ks}=2.21+-0.24 and alpha_{Ks-L'}=1.34+-0.29. A Ks-band extinction map for the Galactic center is computed based on this extinction law and on stellar H-Ks colors. Mean extinction values in a circular region with 0.5" radius centered on Sagittarius A* are A_{H, SgrA*}=4.35+-0.12, A_{Ks, SgrA*}=2.46+-0.03, and A_{L', SgrA*}=1.23+-0.08.Comment: accepted for publication by Astronomy & Astrophysics; please contact RS for higher quality figure

    Effect of zooplankton-mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates)

    Get PDF
    To examine the grazing effects of copepod-dominated mesozooplankton on heterotrophic microbial communities, four mesocosm experiments using gradients of zooplankton abundance were carried out at a coastal marine site. The responses of different protist groups (nanoflagellates, ciliates) and bacterioplankton in terms of abundance and additionally, for bacteria, diversity, production, and exoenzymatic activity, were monitored during 1 week of incubation. Independent of the initial experimental abiotic conditions and the dominating copepod species, zooplankton caused order-of-magnitude changes in microbial functional groups in a clear community-wide four-link trophic cascade. The strongest predatory effects were observed for protist concentrations, thus generating inverse relationships between mesozooplankton and ciliates and between ciliates and nanoplankton. Copepod grazing effects propagated even further, not only reducing the abundance, production, and hydrolytic activity of bacterioplankton but also increasing bacterial diversity. The overall strength of this trophic cascade was dampened with respect to bacterial numbers, but more pronounced with respect to bacterial diversity and activity. High predation pressure by heterotrophic nanoflagellates, realized at the highest copepod abundance, was probably the underlying mechanism for these structural changes in the bacterial assemblages. Our results thus suggest a mechanism by which changes in higher trophic levels of marine plankton indirectly affect prokaryotic assemblages and microbially mediated ecosystem functions

    Intensive monitoring of the strongly variable BL Lac S5 0716+714

    Get PDF
    The BL Lac object S5 0716+714 was monitored during a multifrequency campaign in 1996. Preliminary analysis of the optical, ROSAT and RXTE data are presented. Strong variability on short time scales was observed. The data suggest an interpretation within a multi-component model.Comment: To appear in The Active X-ray Sky: Results from BeppoSAX and Rossi-XTE, Rome, Italy, 21-24 October, 1997. Eds.: L. Scarsi, Bradt, P. Giommi and F. Fiore. PS-file avialable at http://www.lsw.uni-heidelberg.de/projects/extragalactic/bl_lac.htm

    First proper motions of thin dust filaments at the Galactic Center

    Full text link
    Context: L'-band (3.8 micron) images of the Galactic Center show a large number of thin filaments in the mini-spiral, located west of the mini-cavity and along the inner edge of the Northern Arm. One possible mechanism that could produce such structures is the interaction of a central wind with the mini-spiral. Additionally, we identify similar features that appear to be associated with stars. Aims: We present the first proper motion measurements of the thin dust filaments observed in the central parsec around SgrA* and investigate possible mechanisms that could be responsible for the observed motions. Methods: The observations have been carried out using the NACO adaptive optics system at the ESO VLT. The images have been transformed to a common coordinate system and features of interest were extracted. Then a cross-correlation technique could be performed in order to determine the offsets between the features with respect to their position in the reference epoch. Results: We derive the proper motions of a number of filaments and 2 cometary shaped dusty sources close (in projection) to SgrA*. We show that the shape and the motion of the filaments does not agree with a purely Keplerian motion of the gas in the potential of the supermassive black hole at the position of SgrA*. Therefore, additional mechanisms must be responsible for their formation and motion. We argue that the properties of the filaments are probably related to an outflow from the disk of young mass-losing stars around SgrA*. In part, the outflow may originate from the black hole itself. We also present some evidence and theoretical considerations that the outflow may be collimated.Comment: accepted for publication by A&

    Near infrared flares of Sagittarius A*: Importance of near infrared polarimetry

    Full text link
    We report on the results of new simulations of near-infrared (NIR) observations of the Sagittarius A* (Sgr A*) counterpart associated with the super-massive black hole at the Galactic Center. The observations have been carried out using the NACO adaptive optics (AO) instrument at the European Southern Observatory's Very Large Telescope and CIAO NIR camera on the Subaru telescope (13 June 2004, 30 July 2005, 1 June 2006, 15 May 2007, 17 May 2007 and 28 May 2008). We used a model of synchrotron emission from relativistic electrons in the inner parts of an accretion disk. The relativistic simulations have been carried out using the Karas-Yaqoob (KY) ray-tracing code. We probe the existence of a correlation between the modulations of the observed flux density light curves and changes in polarimetric data. Furthermore, we confirm that the same correlation is also predicted by the hot spot model. Correlations between intensity and polarimetric parameters of the observed light curves as well as a comparison of predicted and observed light curve features through a pattern recognition algorithm result in the detection of a signature of orbiting matter under the influence of strong gravity. This pattern is detected statistically significant against randomly polarized red noise. Expected results from future observations of VLT interferometry like GRAVITY experiment are also discussed.Comment: 26 pages, 38 figures, accepted for publication by A&

    Simultaneous NIR/sub-mm observation of flare emission from SgrA*

    Get PDF
    We report on a successful, simultaneous observation and modeling of the sub-millimeter to near-infrared flare emission of the Sgr A* counterpart associated with the super-massive black hole at the Galactic center. Our modeling is based on simultaneous observations that have been carried out on 03 June, 2008 using the NACO adaptive optics (AO) instrument at the ESO VLT and the LABOCA bolometer at the APEX telescope. Inspection and modeling of the light curves show that the sub-mm follows the NIR emission with a delay of 1.5+/-0.5 hours. We explain the flare emission delay by an adiabatic expansion of the source components.Comment: 12 pages, 9 figures, 3 tables, in press with A&

    The extreme luminosity states of Sagittarius A*

    Full text link
    We discuss mm-wavelength radio, 2.2-11.8um NIR and 2-10 keV X-ray light curves of the super massive black hole (SMBH) counterpart of Sagittarius A* (SgrA*) near its lowest and highest observed luminosity states. The luminosity during the low state can be interpreted as synchrotron emission from a continuous or even spotted accretion disk. For the high luminosity state SSC emission from THz peaked source components can fully account for the flux density variations observed in the NIR and X-ray domain. We conclude that at near-infrared wavelengths the SSC mechanism is responsible for all emission from the lowest to the brightest flare from SgrA*. For the bright flare event of 4 April 2007 that was covered from the radio to the X-ray domain, the SSC model combined with adiabatic expansion can explain the related peak luminosities and different widths of the flare profiles obtained in the NIR and X-ray regime as well as the non detection in the radio domain.Comment: 18 pages, 13 figures, accepted by A&
    corecore