14 research outputs found

    Mapping Brucellosis Increases Relative to Elk Density using Hierarchical Bayesian Models

    Get PDF
    The relationship between host density and parasite transmission is central to the effectiveness of many management strategies. We applied hierarchical Bayesian methods to an 18-yr dataset on elk (Cervus elaphus) brucellosis in the Greater Yellowstone Ecosystem (GYE) and found that increases in brucellosis seroprevalence were strongly correlated with elk densities. Elk that were densely aggregated on supplemental feeding grounds had higher seroprevalence in 1991, but by 2008 many areas distant from the feeding grounds were of comparable seroprevalence. Thus, brucellosis appears to be expanding its range into areas of higher elk density, which is likely to further complicate the United States brucellosis eradication program. The data could not differentiate among linear and non-linear effects of host density, which is a critical area where research can inform management actions. This study is an example of how the dynamics of host populations can affect their ability to serve as disease reservoirs

    Geo-Statistical Methods for Detecting Elk Parturition Sites from GPS Collar Data

    Get PDF
    There is an increasing awareness of the importance of juvenile survival in ungulate population dynamics, and the accurate prediction of parturition habitat may allow for more effective management. Detecting birth sites in a statistically rigorous way, however, often requires intensive field efforts that may not be possible for all studies. We developed a hierarchical two-stage clustering analysis for identifying elk parturition locations, which can be conducted retrospectively using only GPS location data. We validated our approach using a dataset of 59 adult female elk ( Cervus elaphus) fitted with both a Global Positioning System (GPS) collar (30-minute sampling interval) and vaginal implant transmitter (VIT) For the top parameter set, approximately 80% of estimable parturition sites were within 1 km of their respective VIT location. Roughly 10 % of our predicted birthing locations were over 2 km away from the VIT location, but many of these events could be filtered from the analyses due to their clustering attributes. Designed to minimize Type II errors this filtering also removes a subset of birthing sites that close to VIT locations, and magnitude of this effect varied across parameter sets. Sub-sampling of the GPS dataset from 30 min to 1, 2, 3, and 6 hour intervals resulted in modest reductions in the efficacy of our approach. With the use of GPS collars in ungulate studies on the rise, our approach provides managers with additional information on birth site locations at no additional cost over and above a typical GPS study

    Density Dependence, Whitebark Pine Decline and Vital Rates of Grizzly Bears in The Greater Yellowstone Ecosystem

    Get PDF
    Recent evidence suggests annual population growth of the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem has slowed from 4.1–7.6 percent during 1983–2001 to 0.3–2.2 percent during 2002–2011. Substantial changes in availability of an important fall food has occurred over the past decade. Whitebark pine (Pinus albicaulis), a highly variable but important fall food source for grizzly bears, has experienced substantial mortality due to a mountain pine beetle (Dendroctonus ponderosae) outbreak that started in the early 2000s. Concurrent with changes in food resources, the grizzly bear population has reached high densities in some areas and has continued to expand, now occupying >50,000 km2. We tested research hypotheses to examine if changes in vital rates detected during the past decade were more associated with grizzly bear density versus a whitebark pine decline. We focused our assessment on known-fate data to estimate survival of cubs-of-the-year, yearlings, and independent bears (? 2 yrs) and reproductive transition of females from having no offspring to having cubs.  We observed a change in survival of independent bears between the periods of 1983–2001 and 2002–2012, which was mostly a function of increased male survival; female survival did not change. Cub survival and reproductive transition declined during the last decade and were associated with an index of grizzly bear density, which indicated increasing density over time. We found no support that the decline in these vital rates was associated with the index of whitebark decline

    Influence of Whitebark Pine Decline on Fall Habitat Use and Movements of Grizzly Bears in the Greater Yellowstone Ecosystem

    Get PDF
    Seeds of whitebark pine (WBP; Pinus albicaulis) are a major food item for grizzly bears (Ursus arctos) in the greater Yellowstone ecosystem. Higher rates of bear mortality and bear-human conflicts are linked with low WBP productivity. Recently, infestations of mountain pine beetle (Dendroctonus ponderosae) have killed many mature, cone-bearing WBP trees. We investigated whether this decline caused bears to reduce their use of WBP and increase use of areas near humans. We used 52,332 GPS locations of 72 individuals (89 bear-years) monitored during fall (15 Aug–30 Sep) to examine temporal changes in habitat use and movements during 2000–2011. We calculated a Manley-Chesson (MC) index for selectivity of mapped WBP habitats for each individual within its 100% local convex hull home range, and determined dates of WBP use. One third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index > 0.5, indicating selection for WBP habitats. Over the study period, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, 78 percent of bears selected for secure habitat (areas ? 500 m from roads), but mean MC index decreased over the study period during years of good WBP productivity. The foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. However, the reduction in mortality risk associated with use of WBP habitat may be diminishing for bears in multiple-use areas

    Trends in Causes and Distribution, and Effects of Whitebark Pine Decline on Grizzly Bear Mortality in the Greater Yellowstone Ecosystem

    Get PDF
    Documented grizzly bear (Ursus arctos) mortalities have been increasing in recent years in the Greater Yellowstone Ecosystem (GYE), due, in part, to increases in bear numbers and range expansion. Previous research has documented that variable seed production of whitebark pine (WBP; Pinus albicaulis), an important fall food, is inversely related to grizzly bear fall mortality.  However, WBP has experienced widespread mortality during the last decade because of mountain pine beetle (Dendroctonus ponderosae) infestations. We investigated trends in causes and distribution of human-caused mortalities for independent-aged (? 2 yrs old) grizzly bears in the GYE during 1975–2012, and the effect of WBP cone production on numbers of fall (> 1 August) mortalities (n = 172) during the period of WBP decline (2000-2012) using Poisson regression. During 1975–1982, 91 percent of mortalities occurred within the Grizzly Bear Recovery Zone and primary causes were poaching/malicious killings and losses related to conflicts with livestock. During the two most recent decades most mortalities were associated with ungulate hunting, usually involving self-defense kills, or anthropogenic sites, and an increasing percentage of mortalities occurred outside the recovery zone. Using predictor variables of cone production, sex, location in or out of the Recovery Zone, and year suggests: 1) annual cone production was still predictive of human-caused fall mortalities, 2) no evidence of a difference in annual numbers of fall mortalities between males and females, and 3) an increase in annual mortalities over the study period, with most of this increase outside the Recovery Zone

    Estimating Grizzly Bear Use of Large Ungulate Carcasses With GPS Telemetry Data

    Get PDF
    Ungulate meat is among the most calorie-rich food sources available to grizzly bears  (Ursus arctos) in the greater Yellowstone ecosystem (GYE). However, the ephemeral and unpredictable nature of carcasses makes them difficult to study and their influence on grizzly bear foraging and spatial ecology is poorly understood. We developed a spatial-clustering technique specifically for detecting grizzly bear use of large ungulate carcasses using Global Positioning System (GPS) telemetry locations (n = 54 bear years). We used the DBScan algorithm to identify GPS clusters of individual bears (n = 2,038) and intersected these clusters with an independent dataset of site  visits to recent bear movement paths based from randomly selected days (n = 732 site visits; 2004–2011) resulting in 174 clusters associated with field measured bear behavior. Using a suite of predictor variables derived from GPS telemetry locations, e.g., duration of cluster, area used, activity sensor values, re-visitation rate, we used multinomial logistic regression to predict the probability of belonging to  each of the five response classes (resting, multiple-use, low-biomass carcass, high-biomass carcass, old carcass). Focusing on the high-biomass carcass category, for which our top model correctly classified 88 percent of the carcasses correctly, we applied our approach to a larger dataset of GPS data to examine trends in large-ungulate carcass using of grizzly bears in the GYE from 2002-2011. We found quantitative support for a positive effect of year and mortality adjusted white bark pine cone counts on the carcass-use index during the fall months (Sep and Oct) from 2002-2011

    Rapid spatiotemporal variations in rift structure during development of the Corinth Rift, central Greece

    Get PDF
    The Corinth Rift, central Greece, enables analysis of early rift development as it is young (<5Ma) and highly active and its full history is recorded at high resolution by sedimentary systems. A complete compilation of marine geophysical data, complemented by onshore data, is used to develop a high-resolution chronostratigraphy and detailed fault history for the offshore Corinth Rift, integrating interpretations and reconciling previous discrepancies. Rift migration and localization of deformation have been significant within the rift since inception. Over the last circa 2Myr the rift transitioned from a spatially complex rift to a uniform asymmetric rift, but this transition did not occur synchronously along strike. Isochore maps at circa 100kyr intervals illustrate a change in fault polarity within the short interval circa 620-340ka, characterized by progressive transfer of activity from major south dipping faults to north dipping faults and southward migration of discrete depocenters at ~30m/kyr. Since circa 340ka there has been localization and linkage of the dominant north dipping border fault system along the southern rift margin, demonstrated by lateral growth of discrete depocenters at ~40m/kyr. A single central depocenter formed by circa 130ka, indicating full fault linkage. These results indicate that rift localization is progressive (not instantaneous) and can be synchronous once a rift border fault system is established. This study illustrates that development processes within young rifts occur at 100kyr timescales, including rapid changes in rift symmetry and growth and linkage of major rift faults
    corecore