309 research outputs found

    Clinical Frailty Scale (CFS) reliably stratifies octogenarians in German ICUs: a multicentre prospective cohort study

    Get PDF
    Background: In intensive care units (ICU) octogenarians become a routine patients group with aggravated therapeutic and diagnostic decision-making. Due to increased mortality and a reduced quality of life in this high-risk population, medical decision-making a fortiori requires an optimum of risk stratification. Recently, the VIP-1 trial prospectively observed that the clinical frailty scale (CFS) performed well in ICU patients in overall-survival and short-term outcome prediction. However, it is known that healthcare systems differ in the 21 countries contributing to the VIP-1 trial. Hence, our main focus was to investigate whether the CFS is usable for risk stratification in octogenarians admitted to diversified and high tech German ICUs. Methods: This multicentre prospective cohort study analyses very old patients admitted to 20 German ICUs as a sub-analysis of the VIP-1 trial. Three hundred and eight patients of 80 years of age or older admitted consecutively to participating ICUs. CFS, cause of admission, APACHE II, SAPS II and SOFA scores, use of ICU resources and ICU- and 30-day mortality were recorded. Multivariate logistic regression analysis was used to identify factors associated with 30-day mortality. Results: Patients had a median age of 84 [IQR 82–87] years and a mean CFS of 4.75 (± 1.6 standard-deviation) points. More than half of the patients (53.6%) were classified as frail (CFS ≥ 5). ICU-mortality was 17.3% and 30-day mortality was 31.2%. The cause of admission (planned vs. unplanned), (OR 5.74) and the CFS (OR 1.44 per point increase) were independent predictors of 30-day survival. Conclusions: The CFS is an easy determinable valuable tool for prediction of 30-day ICU survival in octogenarians, thus, it may facilitate decision-making for intensive care givers in Germany. Trial registration: The VIP-1 study was retrospectively registered on ClinicalTrials.gov (ID: NCT03134807 ) on May 1, 2017

    Severe Neuro-COVID is associated with peripheral immune signatures, autoimmunity and neurodegeneration: a prospective cross-sectional study

    Full text link
    Growing evidence links COVID-19 with acute and long-term neurological dysfunction. However, the pathophysiological mechanisms resulting in central nervous system involvement remain unclear, posing both diagnostic and therapeutic challenges. Here we show outcomes of a cross-sectional clinical study (NCT04472013) including clinical and imaging data and corresponding multidimensional characterization of immune mediators in the cerebrospinal fluid (CSF) and plasma of patients belonging to different Neuro-COVID severity classes. The most prominent signs of severe Neuro-COVID are blood-brain barrier (BBB) impairment, elevated microglia activation markers and a polyclonal B cell response targeting self-antigens and non-self-antigens. COVID-19 patients show decreased regional brain volumes associating with specific CSF parameters, however, COVID-19 patients characterized by plasma cytokine storm are presenting with a non-inflammatory CSF profile. Post-acute COVID-19 syndrome strongly associates with a distinctive set of CSF and plasma mediators. Collectively, we identify several potentially actionable targets to prevent or intervene with the neurological consequences of SARS-CoV-2 infection

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    HIV Infection Is Associated with a Preferential Decline in Less-Differentiated CD56dim CD16+ NK Cells▿

    No full text
    HIV-1 infection is characterized by loss of CD56dim CD16+ NK cells and increased terminal differentiation on various lymphocyte subsets. We identified a decrease of CD57− and CD57dim cells but not of CD57bright cells on CD56dim CD16+ NK cells in chronic HIV infection. Increasing CD57 expression was strongly associated with increasing frequencies of killer immunoglobulin-like receptors (KIRs) and granzyme B-expressing cells but decreasing percentages of cells expressing CD27+, HLA-DR+, Ki-67+, and CD107a. Our data indicate that HIV leads to a decline of less-differentiated cells and suggest that CD57 is a useful marker for terminal differentiation on NK cells

    Comparison of the integrin α4β7 expression pattern of memory T cell subsets in HIV infection and ulcerative colitis.

    No full text
    Anti-α4β7 therapy with vedolizumab (VDZ) has been suggested as possible immune intervention in HIV. Relatively little is known about the α4β7-integrin (α4β7) expression of different T-cell subsets in different anatomical compartments of healthy individuals, patients with HIV or inflammatory bowel disease (IBD). Surface expression of α4β7 as well as the frequency of activation, homing and exhaustion markers of T cells were assessed by multicolour flow cytometry in healthy volunteers (n = 15) compared to HIV infected patients (n = 52) or patients diagnosed with ulcerative colitis (UC) (n = 14), 6 of whom treated with vedolizumab. In addition, lymph nodal cells (n = 6), gut-derived cells of healthy volunteers (n = 5) and patients with UC (n = 6) were analysed. Additionally, we studied longitudinal PBMC samples of an HIV patient who was treated with vedolizumab for concomitant UC. Overall, only minor variations of the frequency of α4β7 on total CD4+ T cells were detectable regardless of the disease status or (VDZ) treatment status in peripheral blood and the studied tissues. Peripheral α4β7+ CD4+ T cells of healthy individuals and patients with UC showed a higher activation status and were more frequently CCR5+ than their α4β7- counterparts. Also, the frequency of α4β7+ cells was significantly lower in peripheral blood CD4+ effector memory T cells of HIV-infected compared to healthy individuals and this reduced frequency did not recover in HIV patients on ART. Conversely, the frequency of peripheral blood naïve α4β7+ CD4+ T cells was significantly reduced under VDZ treatment. The results of the current study will contribute to the understanding of the dynamics of α4β7 expression pattern on T cells in HIV and UC and will be useful for future studies investigating VDZ as possible HIV cure strategy

    The glucose-sensing transcription factor ChREBP is targeted by proline hydroxylation

    No full text
    Abstract Cellular energy demands are met by uptake and metabolism of nutrients like glucose. The principal transcriptional regulator for adapting glycolytic flux and downstream pathways like de novo lipogenesis to glucose availability in many cell types is carbohydrate response element–binding protein (ChREBP). ChREBP is activated by glucose metabolites and post-translational modifications, inducing nuclear accumulation and regulation of target genes. Here we report that ChREBP is modified by proline hydroxylation at several residues. Proline hydroxylation targets both ectopically expressed ChREBP in cells and endogenous ChREBP in mouse liver. Functionally, we found that specific hydroxylated prolines were dispensable for protein stability but required for the adequate activation of ChREBP upon exposure to high glucose. Accordingly, ChREBP target gene expression was rescued by re-expressing WT but not ChREBP that lacks hydroxylated prolines in ChREBP-deleted hepatocytes. Thus, proline hydroxylation of ChREBP is a novel post-translational modification that may allow for therapeutic interference in metabolic diseases

    Relative and absolute loss of CCR7<sup>+</sup>CD56<sup>bright</sup> NK cells is not attributable to apoptosis.

    No full text
    <p>(A) Absolute cell numbers of CD56<sup>bright</sup> NK cells are depicted. Horizontal bars indicate means. (B) Absolute cell numbers of either CCR7<sup>+</sup> or CCR7<sup>−</sup>CD56<sup>bright</sup> NK cells are shown. (C) Representative flow cytometry data of CD95 on gated CD56<sup>bright</sup> NK cells and respective summary data derived from untreated HIV-patients. Numbers in flow cytometry plots indicate frequencies of quadrants and horizontal bars in dot plot indicate mean values. (D) Pearson’s correlation analysis between frequencies of CCR7- and CD69-expressing CD56<sup>bright</sup> NK cells. *, <i>P</i><0.05; ***, <i>P</i><0.001; <i>NS</i> – not significant.</p
    corecore