138 research outputs found
Recommended from our members
Dialectic tensions in the financial markets: a longitudinal study of pre- and post-crisis regulatory technology
This article presents the findings from a longitudinal research study on regulatory technology in the UK financial services industry. The financial crisis with serious corporate and mutual fund scandals raised the profile of
compliance as governmental bodies, institutional and private investors introduced a ‘tsunami’ of financial regulations. Adopting a multi-level analysis, this study examines how regulatory technology was used by financial firms to meet their compliance obligations, pre- and post-crisis. Empirical data collected over 12 years examine the deployment of
an investment management system in eight financial firms. Interviews with public regulatory bodies, financial
institutions and technology providers reveal a culture of compliance with increased transparency, surveillance and
accountability. Findings show that dialectic tensions arise as the pursuit of transparency, surveillance and
accountability in compliance mandates is simultaneously rationalized, facilitated and obscured by regulatory
technology. Responding to these challenges, regulatory bodies continue to impose revised compliance mandates on
financial firms to force them to adapt their financial technologies in an ever-changing multi-jurisdictional regulatory landscape
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
L'utilisation de transpondeurs passifs pour l'estimation du transport sédimentaire : premiers retours d'expérience
National audienc
- …