152 research outputs found

    Rebounce and Black hole formation in a Gravitational Collapse Model with Vanishing Radial Pressure

    Full text link
    We examine spherical gravitational collapse of a matter model with vanishing radial pressure and non-zero tangential pressure. It is seen analytically that the collapsing cloud either forms a black hole or disperses depending on values of the initial parameters which are initial density, tangential pressure and velocity profile of the cloud. A threshold of black hole formation is observed near which a scaling relation is obtained for the mass of black hole, assuming initial profiles to be smooth. The similarities in the behaviour of this model at the onset of black hole formation with that of numerical critical behaviour in other collapse models are indicated.Comment: 15 pages, To be published in Gen.Rel.Gra

    Utilization of Carbon Substrates, Electrophoretic Enzyme Patterns, and Symbiotic Performance of Plasmid-Cured Clover Rhizobia

    Get PDF
    Plasmids in Rhizobium spp. are relatively large, numerous, and difficult to cure. Except for the symbiotic plasmid, little is known about their functions. The primary objective of our investigation was to obtain plasmid-cured derivatives of Rhizobium leguminosarum bv. trifolii by using a direct selection system and to determine changes in the phenotype of the cured strains. Three strains of rhizobia were utilized that contained three, four, and five plasmids. Phenotypic effects observed after curing of plasmids indicated that the plasmids were involved in the utilization of adonitol, arabinose, catechol, glycerol, inositol, lactose, malate, rhamnose, and sorbitol and also influenced motility, lipopolysaccharide production, and utilization of nitrate. Specific staining of 26 enzymes electrophoretically separated on starch gels indicated that superoxide dismutase, hexokinase, and carbamate kinase activities were affected by curing of plasmids. Curing of cryptic plasmids also influenced nodulation and growth of plants on nitrogen-deficient media. The alteration in the ability to utilize various substrates after curing of plasmids suggests that the plasmids may encode genes that contribute significantly to the saprophytic competence of rhizobia in soil

    The structure of non-spacelike geodesics in dust collapse

    Get PDF
    We study here the behaviour of non-spacelike geodesics in dust collapse models in order to understand the casual structure of the spacetime. The geodesic families coming out, when the singularity is naked, corresponding to different initial data are worked out and analyzed. We also bring out the similarity of the limiting behaviour for different types of geodesics in the limit of approach to the singularity.Comment: 23 pages, 6 figures, to appear in PR

    Direct amplification of nodD from community DNA reveals the genetic diversity of Rhizobium leguminosarum in soil

    Get PDF
    Sequences of nodD, a gene found only in rhizobia, were amplified from total community DNA isolated from a pasture soil. The polymerase chain reaction (PCR) primers used, Y5 and Y6, match nodD from Rhizobium leguminosarum biovar trifolii, R. leguminosarum biovar viciae and Sinorhizobium meliloti. The PCR product was cloned and yielded 68 clones that were identified by restriction pattern as derived from biovar trifolii [11 restriction fragment length polymorphism (RFLP) types] and 15 clones identified as viciae (seven RFLP types). These identifications were confirmed by sequencing. There were no clones related to S. meliloti nodD. For comparison, 122 strains were isolated from nodules of white clover (Trifolium repens) growing at the field site, and 134 from nodules on trap plants of T. repens inoculated with the soil. The nodule isolates were of four nodD RFLP types, with 77% being of a single type. All four of these patterns were also found among the clones from soil DNA, and the same type was the most abundant, although it made up only 34% of the trifolii-like clones. We conclude that clover selects specific genotypes from the available soil population, and that R. leguminosarum biovar trifolii was approximately five times more abundant than biovar viciae in this pasture soil, whereas S. meliloti was rare

    A Tolman-Bondi-Lemaitre Cell-Model for the Universe and Gravitational Collapse

    Get PDF
    A piecewise Tolman-Bondi-Lemaitre (TBL) cell-model for the universe incorporating local collapsing and expanding inhomogeneities is presented here. The cell-model is made up of TBL underdense and overdense spherical regions surrounded by an intermediate region of TBL shells embedded in an expanding universe. The cell-model generalizes the Friedmann as well as Einstein-Straus swiss-cheese models and presents a number of advantages over other models, and in particular the time evolution of the cosmological inhomogeneities is now incorporated within the scheme. Important problem of gravitational collapse of a massive dust cloud, such as a cluster of galaxies or even a massive star, in such a cosmological background is examined. It is shown that the collapsing local inhomogeneities in an expanding universe could result in either a black hole, or a naked singularity, depending on the nature of the set of initial data which consists of the matter distribution and the velocities of the collapsing shells in the cloud at the initial epoch from which the collapse commences.Comment: 14 pages, 3 figure

    Evidence for diversifying selection of genetic regions of encoding putative collagen-like host-adhesive fibers in Pasteuria penetrans

    Get PDF
    © FEMS 2018. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Pasteuria spp. belong to a group of genetically diverse endospore-forming bacteria (phylum: Firmicutes) that are known to parasitize plant-parasitic nematodes and water fleas (Daphnia spp.). Collagen-like fibres form the nap on the surface of endospores and the genes encoding these sequences have been hypothesised to be involved in the adhesion of the endospores of Pasteuria spp. to their hosts. We report a group of 17 unique collagen-like genes putatively encoded by Pasteuria penetrans (strain: Res148) that formed five different phylogenetic clusters and suggest that collagen-like proteins are an important source of genetic diversity in animal pathogenic Firmicutes including Pasteuria. Additionally, and unexpectedly, we identified a putative collagen-like sequence which had a very different sequence structure to the other collagen-like proteins but was similar to the protein sequences in Megaviruses that are involved in host-parasite interactions. We, therefore, suggest that these diverse endospore surface proteins in Pasteuria are involved in biological functions, such as cellular adhesion; however, they are not of monophyletic origin and were possibly obtained de novo by mutation or possibly through selection acting upon several historic horizontal gene transfer events.Peer reviewedFinal Published versio

    The Genome of the Acid Soil-Adapted Strain Rhizobium favelukesii OR191 Encodes Determinants for Effective Symbiotic Interaction With Both an Inverted Repeat Lacking Clade and a Phaseoloid Legume Host

    Get PDF
    Although Medicago sativa forms highly effective symbioses with the comparatively acid-sensitive genus Ensifer, its introduction into acid soils appears to have selected for symbiotic interactions with acid-tolerant R. favelukesii strains. Rhizobium favelukesii has the unusual ability of being able to nodulate and fix nitrogen, albeit sub-optimally, not only with M. sativa but also with the promiscuous host Phaseolus vulgaris. Here we describe the genome of R. favelukesii OR191 and genomic features important for the symbiotic interaction with both of these hosts. The OR191 draft genome contained acid adaptation loci, including the highly acid-inducible lpiA/acvB operon and olsC, required for production of lysine- and ornithine-containing membrane lipids, respectively. The olsC gene was also present in other acid-tolerant Rhizobium strains but absent from the more acid-sensitive Ensifer microsymbionts. The OR191 symbiotic genes were in general more closely related to those found in Medicago microsymbionts. OR191 contained the nodA, nodEF, nodHPQ, and nodL genes for synthesis of polyunsaturated, sulfated and acetylated Nod factors that are important for symbiosis with Medicago, but contained a truncated nodG, which may decrease nodulation efficiency with M. sativa. OR191 contained an E. meliloti type BacA, which has been shown to specifically protect Ensifer microsymbionts from Medicago nodule-specific cysteine-rich peptides. The nitrogen fixation genes nifQWZS were present in OR191 and P. vulgaris microsymbionts but absent from E. meliloti-Medicago microsymbionts. The ability of OR191 to nodulate and fix nitrogen symbiotically with P. vulgaris indicates that this host has less stringent requirements for nodulation than M. sativa but may need rhizobial strains that possess nifQWZS for N2-fixation to occur. OR191 possessed the exo genes required for the biosynthesis of succinoglycan, which is required for the Ensifer-Medicago symbiosis. However, 1H-NMR spectra revealed that, in the conditions tested, OR191 exopolysaccharide did not contain a succinyl substituent but instead contained a 3-hydroxybutyrate moiety, which may affect its symbiotic performance with Medicago hosts. These findings provide a foundation for the genetic basis of nodulation requirements and symbiotic effectiveness with different hosts

    Barium in twilight zone suspended matter as a potential proxy for particulate organic carbon remineralization : results for the North Pacific

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 55 (2008): 1673-1683, doi:10.1016/j.dsr2.2008.04.020.This study focuses on the fate of exported organic carbon in the twilight zone at two contrasting environments in the North Pacific: the oligotrophic ALOHA site (22°45' N 158°W; Hawaii; studied during June–July 2004) and the mesotrophic Subarctic Pacific K2 site (47°N, 161°W; studied during July-August 2005). Earlier work has shown that non-lithogenic, excess particulate Ba (Baxs) in the mesopelagic water column is a potential proxy of organic carbon remineralization. In general Baxs contents were significantly larger at K2 than at ALOHA. At ALOHA the Baxs profiles from repeated sampling (5 casts) showed remarkable consistency over a period of three weeks, suggesting that the system was close to being at steady state. In contrast, more variability was observed at K2 (6 casts sampled) reflecting the more dynamic physical and biological conditions prevailing in this environment. While for both sites Baxs concentrations increased with depth, at K2 a clear maximum was present between the base of the mixed layer at around 50m and 500m, reflecting production and release of Baxs. Larger mesopelagic Baxs contents and larger bacterial production in the twilight zone at the K2 site indicate that more material was exported from the upper mixed layer for bacterial degradation deeper, compared to the ALOHA site. Furthermore, application of a published transfer function (Dehairs et al., 1997) relating oxygen consumption to the observed Baxs data indicated that the latter were in good agreement with bacterial respiration, calculated from bacterial production. These results corroborate earlier findings highlighting the potential of Baxs as a proxy for organic carbon remineralization. The range of POC remineralization rates calculated from twilight zone excess particulate Ba contents did also compare well with the depth dependent POC flux decrease as recorded by neutrally buoyant sediment traps, except in 1 case (out of 4). This discrepancy could indicate that differences in sinking velocities cause an 3 uncoupling of the processes occurring in the fine suspended particle pool from those affecting the larger particle pool which sustains the vertical flux, thus rendering comparison between both approaches risky.This research was supported by Federal Science Policy Office, Brussels through contracts EV/03/7A, SD/CA/03A, the Research Foundation Flanders through grant G.0021.04 and Vrije Universiteit Brussel via grant GOA 22, as well as the US National Science Foundation programs in Chemical and Biological Oceanography
    • …
    corecore