11 research outputs found

    Hidden Treasures in “Ancient” Microarrays: Gene-Expression Portrays Biology and Potential Resistance Pathways of Major Lung Cancer Subtypes and Normal Tissue

    Get PDF
    Objective: Novel statistical methods and increasingly more accurate gene annotations can transform “old” biological data into a renewed source of knowledge with potential clinical relevance. Here, we provide an in silico proof-of-concept by extracting novel information from a high-quality mRNA expression dataset, originally published in 2001, using state-of-the-art bioinformatics approaches. Methods: The dataset consists of histologically defined cases of lung adenocarcinoma (AD), squamous (SQ) cell carcinoma, small-cell lung cancer, carcinoid, metastasis (breast and colon AD), and normal lung specimens (203 samples in total). A battery of statistical tests was used for identifying differential gene expressions, diagnostic and prognostic genes, enriched gene ontologies, and signaling pathways. Results: Our results showed that gene expressions faithfully recapitulate immunohistochemical subtype markers, as chromogranin A in carcinoids, cytokeratin 5, p63 in SQ, and TTF1 in non-squamous types. Moreover, biological information with putative clinical relevance was revealed as potentially novel diagnostic genes for each subtype with specificity 93–100% (AUC = 0.93–1.00). Cancer subtypes were characterized by (a) differential expression of treatment target genes as TYMS, HER2, and HER3 and (b) overrepresentation of treatment-related pathways like cell cycle, DNA repair, and ERBB pathways. The vascular smooth muscle contraction, leukocyte trans-endothelial migration, and actin cytoskeleton pathways were overexpressed in normal tissue. Conclusion: Reanalysis of this public dataset displayed the known biological features of lung cancer subtypes and revealed novel pathways of potentially clinical importance. The findings also support our hypothesis that even old omics data of high quality can be a source of significant biological information when appropriate bioinformatics methods are used

    A short history of the 5-HT2C receptor: from the choroid plexus to depression, obesity and addiction treatment

    Get PDF
    This paper is a personal account on the discovery and characterization of the 5-HT2C receptor (first known as the 5- HT1C receptor) over 30 years ago and how it translated into a number of unsuspected features for a G protein-coupled receptor (GPCR) and a diversity of clinical applications. The 5-HT2C receptor is one of the most intriguing members of the GPCR superfamily. Initially referred to as 5-HT1CR, the 5-HT2CR was discovered while studying the pharmacological features and the distribution of [3H]mesulergine-labelled sites, primarily in the brain using radioligand binding and slice autoradiography. Mesulergine (SDZ CU-085), was, at the time, best defined as a ligand with serotonergic and dopaminergic properties. Autoradiographic studies showed remarkably strong [3H]mesulergine-labelling to the rat choroid plexus. [3H]mesulergine-labelled sites had pharmacological properties different from, at the time, known or purported 5-HT receptors. In spite of similarities with 5-HT2 binding, the new binding site was called 5-HT1C because of its very high affinity for 5-HT itself. Within the following 10 years, the 5-HT1CR (later named 5- HT2C) was extensively characterised pharmacologically, anatomically and functionally: it was one of the first 5-HT receptors to be sequenced and cloned. The 5-HT2CR is a GPCR, with a very complex gene structure. It constitutes a rarity in theGPCR family: many 5-HT2CR variants exist, especially in humans, due to RNA editing, in addition to a few 5-HT2CR splice variants. Intense research led to therapeutically active 5-HT2C receptor ligands, both antagonists (or inverse agonists) and agonists: keeping in mind that a number of antidepressants and antipsychotics are 5- HT2CR antagonists/inverse agonists. Agomelatine, a 5-HT2CR antagonist is registered for the treatment of major depression. The agonist Lorcaserin is registered for the treatment of aspects of obesity and has further potential in addiction, especially nicotine/ smoking. There is good evidence that the 5-HT2CR is involved in spinal cord injury-induced spasms of the lower limbs, which can be treated with 5-HT2CR antagonists/inverse agonists such as cyproheptadine or SB206553. The 5-HT2CR may play a role in schizophrenia and epilepsy. Vabicaserin, a 5-HT2CR agonist has been in development for the treatment of schizophrenia and obesity, but was stopped. As is common, there is potential for further indications for 5-HT2CR ligands, as suggested by a number of preclinical and/or genome-wide association studies (GWAS) on depression, suicide, sexual dysfunction, addictions and obesity. The 5-HT2CR is clearly affected by a number of established antidepressants/antipsychotics and may be one of the culprits in antipsychotic-induced weight gain

    Viral vector-based prime-boost immunization regimens: a possible involvement of T-cell competition

    No full text
    Vaccination with recombinant viral vectors may be impeded by preexisting vector-specific immunity or by vector-specific immunity induced during the priming immunization. It is assumed that virus-neutralizing antibodies represent the principal effector mechanism of vector-specific immunity, while killing of infected cells by vector-specific cytotoxic T lymphocytes (CTLs) has also been suggested. Using recombinant Semliki Forest virus (rSFV) expressing E6E7 antigen from human papillomavirus, we demonstrate that secondary immune responses against E6E7 are neither affected by vector-specific antibodies nor by CTL-mediated killing of infected cells. Instead, the presence of the antigen during the prime immunization appeared to be the main determinant for the boosting efficacy. After priming with rSFVeE6,7, a homologous booster stimulated the primed E6E7-specific CTL response and induced long-lasting memory. Passively transferred SFV-neutralizing antibodies did not inhibit E6E7-specific CTL responses, although transgene expression was strongly reduced under these conditions. Conversely, in mice primed with irrelevant rSFV, induction of E6E7-specific CTLs was inhibited presumably due to vector-specific responses induced by the priming immunization. When during the priming with irrelevant rSFV, E7-protein was co-administered, the inhibitory effect of vector-specific immunity was abolished. These results suggest that, apart from vector-specific antibodies or killing of infected cells, T-cell competition may be involved in determining the efficacy of viral vector-based prime-boost immunization regimens

    Using Agent-Based Simulation to Understand the Role of Values in Policy-Making

    No full text
    [EN]We propose to explore the role of values in policy-making and the use of ABS for elucidating this role. In this paper we outline a conceptual framework for value-driven modelling of public policies and illustrate it with an agent-based simulation of irrigation practices.The first author is supported with the industrial doctoral 2016DI043 grant of the Catalan Secretariat for Universities and Research (AGAUR), sponsored by FCC AQUALIA, IIIA-CSIC, and UAB. This work has been supported by the Catalan-funded AppPhil project (funded by RecerCaixa 2017) and the Spanish-funded CIMBVAL project (funded by the Spanish government, project # TIN2017-89758-R).Peer reviewe
    corecore