8 research outputs found

    Event-Related Potential Correlates of Performance-Monitoring in a Lateralized Time-Estimation Task

    Get PDF
    Performance-monitoring as a key function of cognitive control covers a wide range of diverse processes to enable goal directed behavior and to avoid maladjustments. Several event-related brain potentials (ERP) are associated with performance-monitoring, but their conceptual background differs. For example, the feedback-related negativity (FRN) is associated with unexpected performance feedback and might serve as a teaching signal for adaptational processes, whereas the error-related negativity (ERN) is associated with error commission and subsequent behavioral adaptation. The N2 is visible in the EEG when the participant successfully inhibits a response following a cue and thereby adapts to a given stop-signal. Here, we present an innovative paradigm to concurrently study these different performance-monitoring-related ERPs. In 24 participants a tactile time-estimation task interspersed with infrequent stop-signal trials reliably elicited all three ERPs. Sensory input and motor output were completely lateralized, in order to estimate any hemispheric processing preferences for the different aspects of performance monitoring associated with these ERPs. In accordance with the literature our data suggest augmented inhibitory capabilities in the right hemisphere given that stop-trial performance was significantly better with left- as compared to right-hand stop-signals. In line with this, the N2 scalp distribution was generally shifted to the right in addition to an ipsilateral shift in relation to the response hand. Other than that, task lateralization affected neither behavior related to error and feedback processing nor ERN or FRN. Comparing the ERP topographies using the Global Map Dissimilarity index, a large topographic overlap was found between all considered components.With an evenly distributed set of trials and a split-half reliability for all ERP components ≥.85 the task is well suited to efficiently study N2, ERN, and FRN concurrently which might prove useful for group comparisons, especially in clinical populations

    Electrophysiological evidence of enhanced performance monitoring in recently abstinent alcoholic men

    Get PDF
    RATIONALE: Chronic alcoholism is associated with mild to moderate cognitive impairment. Under certain conditions, impairment can be ameliorated by invoking compensatory processes. OBJECTIVE: To identify electrophysiological mechanisms of such compensation that would be required to resolve response conflict. METHODS: 14 abstinent alcoholic men and 14 similarly aged control men performed a variation of the Eriksen flanker task during an electroencephalography (EEG) recording to examine whether alcoholics could achieve and maintain control-level performance and whether EEG markers could identify evidence for the action of compensatory processes in the alcoholics. Monitoring processes engaged following a response were indexed by the correct related negativity (CRN) and error related negativity (ERN), two medial-frontal negative event-related potentials. RESULTS: The alcoholics were able to perform at control levels on accuracy and reaction time (RT). Alcoholics generated larger ERN amplitudes following incorrect responses and larger CRNs following correct responses than controls. Both groups showed evidence of post-error slowing. Larger CRN amplitudes in the alcoholics were related to longer RTs. Also observed in the alcoholics was an association between smaller CRN amplitudes and length of sobriety, suggesting a normalization of monitoring activity with extended abstinence. CONCLUSIONS: To the extent that greater amplitude of these electrophysiological markers of performance monitoring indexes greater resource allocation and performance compensation, the larger amplitudes observed in the alcoholic than control group support the view that elevated performance monitoring enables abstinent alcoholics to overcome response conflict, as was evident in their control-level performance

    Literatur

    No full text

    Neurocognitive Mechanisms of Error-Based Motor Learning

    No full text
    corecore