994 research outputs found

    The mortality rates and the space-time patterns of John Snow’s cholera epidemic map

    Get PDF
    Background Snow’s work on the Broad Street map is widely known as a pioneering example of spatial epidemiology. It lacks, however, two significant attributes required in contemporary analyses of disease incidence: population at risk and the progression of the epidemic over time. Despite this has been repeatedly suggested in the literature, no systematic investigation of these two aspects was previously carried out. Using a series of historical documents, this study constructs own data to revisit Snow’s study to examine the mortality rate at each street location and the space-time pattern of the cholera outbreak. Methods This study brings together records from a series of historical documents, and prepares own data on the estimated number of residents at each house location as well as the space-time data of the victims, and these are processed in GIS to facilitate the spatial-temporal analysis. Mortality rates and the space-time pattern in the victims’ records are explored using Kernel Density Estimation and network-based Scan Statistic, a recently developed method that detects significant concentrations of records such as the date and place of victims with respect to their distance from others along the street network. The results are visualised in a map form using a GIS platform. Results Data on mortality rates and space-time distribution of the victims were collected from various sources and were successfully merged and digitised, thus allowing the production of new map outputs and new interpretation of the 1854 cholera outbreak in London, covering more cases than Snow’s original report and also adding new insights into their space-time distribution. They confirmed that areas in the immediate vicinity of the Broad Street pump indeed suffered from excessively high mortality rates, which has been suspected for the past 160 years but remained unconfirmed. No distinctive pattern was found in the space-time distribution of victims’ locations. Conclusions The high mortality rates identified around the Broad Street pump are consistent with Snow’s theory about cholera being transmitted through contaminated water. The absence of a clear space-time pattern also indicates the water-bourne, rather than the then popular belief of air bourne, nature of cholera. The GIS data constructed in this study has an academic value and would cater for further research on Snow’s map

    Rapid generation of chromosome-specific alphoid DNA probes using the polymerase chain reaction

    Get PDF
    Non-isotopic in situ hybridization of chromosome-specific alphoid DNA probes has become a potent tool in the study of numerical aberrations of specific human chromosomes at all stages of the cell cycle. In this paper, we describe approaches for the rapid generation of such probes using the polymerase chain reaction (PCR), and demonstrate their chromosome specificity by fluorescence in situ hybridization to normal human metaphase spreads and interphase nuclei. Oligonucleotide primers for conserved regions of the alpha satellite monomer were used to generate chromosome-specific DNA probes from somatic hybrid cells containing various human chromosomes, and from DNA libraries from sorted human chromosomes. Oligonucleotide primers for chromosome-specific regions of the alpha satellite monomer were used to generate specific DNA probes for the pericentromeric heterochromatin of human chromosomes 1, 6, 7, 17 and X directly from human genomic DNA

    Regional Genetic Structure in the Aquatic Macrophyte Ruppia cirrhosa Suggests Dispersal by Waterbirds

    Get PDF
    The evolutionary history of the genus Ruppia has been shaped by hybridization, polyploidisation and vicariance that have resulted in a problematic taxonomy. Recent studies provided insight into species circumscription, organelle takeover by hybridization, and revealed the importance of verifying species identification to avoid distorting effects of mixing different species, when estimating population connectivity. In the present study, we use microsatellite markers to determine population diversity and connectivity patterns in Ruppia cirrhosa including two spatial scales: (1) from the Atlantic Iberian coastline in Portugal to the Siculo-Tunisian Strait in Sicily and (2) within the Iberian Peninsula comprising the Atlantic-Mediterranean transition. The higher diversity in the Mediterranean Sea suggests that populations have had longer persistence there, suggesting a possible origin and/or refugial area for the species. The high genotypic diversities highlight the importance of sexual reproduction for survival and maintenance of populations. Results revealed a regional population structure matching a continent-island model, with strong genetic isolation and low gene flow between populations. This population structure could be maintained by waterbirds, acting as occasional dispersal vectors. This information elucidates ecological strategies of brackish plant species in coastal lagoons, suggesting mechanisms used by this species to colonize new isolated habitats and dominate brackish aquatic macrophyte systems, yet maintaining strong genetic structure suggestive of very low dispersal.Fundacao para a Cincia e Tecnologia (FCT, Portugal) [PTDC/MAR/119363/2010, BIODIVERSA/0004/2015, UID/Multi/04326/2013]Pew FoundationSENECA FoundationMurcia Government, Spain [11881/PI/09]FCT Investigator Programme-Career Development [IF/00998/2014]Spanish Ministry of Education [AP2008-01209]European Community [00399/2012]info:eu-repo/semantics/publishedVersio

    Effects of seagrasses and algae of the Caulerpa family on hydrodynamics and particle-trapping rates

    Get PDF
    The widespread decline of seagrass beds within the Mediterranean often results in the replacement of seagrasses by opportunistic green algae of the Caulerpa family. Because Caulerpa beds have a different height, stiffness and density compared to seagrasses, these changes in habitat type modify the interaction of the seafloor with hydrodynamics, influencing key processes such as sediment resuspension and particle trapping. Here, we compare the effects on hydrodynamics and particle trapping of Caulerpa taxifolia, C. racemosa, and C. prolifera with the Mediterranean seagrasses Cymodocea nodosa and Posidonia oceanica. All macrophyte canopies reduced near-bed volumetric flow rates compared to bare sediment, vertical profiles of turbulent kinetic energy revealed peak values around the top of the canopies, and maximum values of Reynolds stress increased by a factor of between 1.4 (C. nodosa) and 324.1 (P. oceanica) when vegetation was present. All canopies enhanced particle retention rates compared to bare sediment. The experimental C. prolifera canopy was the most effective at particle retention (m2 habitat); however, C. racemosa had the largest particle retention capacity per structure surface area. Hence, in terms of enhancing particle trapping and reducing hydrodynamic forces at the sediment surface, Caulerpa beds provided a similar or enhanced function compared to P.oceanica and C. nodosa. However, strong seasonality in the leaf area index of C. racemosa and C. taxifolia within the Mediterranean, combined with a weak rhizome structure, suggests that sediments maybe unprotected during winter storms, when most erosion occurs. Hence, replacement of seagrass beds with Caulerpa is likely to have a major influence on annual sediment dynamics at ecosystem scales.This research was funded by the European Network of Excellence ‘‘Marine Biodiversity and Ecosystem Function’’ (MarBEF); FP6, EC contract no. 505446 and a grant from the Fundacio ´n BBVA. EPM was supported by a European Union Marie Curie host fellowship for transfer of knowledge, MTKD-CT-2004-509254, the Spanish national project EVAMARIA (CTM2005-00395/MAR) and the regional government of Andalusia project FUNDIV(P07-RNM-2516)

    Predicting procedure duration of colorectal endoscopic submucosal dissection at Western endoscopy centers

    Get PDF
    Background and study aims Overcoming logistical obstacles for the implementation of colorectal endoscopic submucosal dissection (ESD) requires accurate prediction of procedure times. We aimed to evaluate existing and new prediction models for ESD duration.Patients and methods Records of all consecutive patients who underwent single, non-hybrid colorectal ESDs before 2020 at three Dutch centers were reviewed. The performance of an Eastern prediction model [GIE 2021;94(1):133–144] was assessed in the Dutch cohort. A prediction model for procedure duration was built using multivariable linear regression. The model’s performance was validated using internal validation by bootstrap resampling, internal-external cross-validation and external validation in an independent Swedish ESD cohort.Results A total of 435 colorectal ESDs were analyzed (92% en bloc resections, mean duration 139 minutes, mean tumor size 39 mm). The performance of current unstandardized time scheduling practice was suboptimal (explained variance: R2=27%). We successfully validated the Eastern prediction model for colorectal ESD duration <60 minutes (c-statistic 0.70, 95% CI 0.62–0.77), but this model was limited due to dichotomization of the outcome and a relatively low frequency (14%) of ESDs completed <60 minutes in the Dutch centers. The model was more useful with a dichotomization cut-off of 120 minutes (c-statistic: 0.75; 88% and 17% of “easy” and “very difficult” ESDs completed <120 minutes, respectively). To predict ESD duration as continuous outcome, we developed and validated the six-variable cESD-TIME formula (https://cesdtimeformula.shinyapps.io/calculator/; optimism-corrected R2=61%; R2=66% after recalibration of the slope).Conclusions We provided two useful tools for predicting colorectal ESD duration at Western centers. Further improvements and validations are encouraged with potential local adaptation to optimize time planning

    South American Spider Mites: New Hosts and Localities

    Get PDF
    In order to contribute to taxonomic information on Tetranychid mites (Acari: Tetranychidae) in South America, surveys were conducted in Brazil (15 States and the Federal District) and Uruguay (one Department); 550 samples of 120 plant species were collected. Tetranychid mite infestations were confirmed in 204 samples, and 22 species belonging to seven genera of the Bryobiinae and Tetranychinae subfamilies were identified on 58 different host plants. Thirty-six new plant hosts were found in Brazil, South America, and worldwide for the following species: Eutetranychus banksi (McGregor); Mononychellus tanajoa (Bondar); Oligonychus anonae Paschoal; O. mangiferus (Rahman and Sapra); Tetranychus bastosi Tuttle, Baker and Sales; T. desertorum Banks, 1900, T. evansi Baker and Pritchard; T. ludeni Zacher; T. mexicanus (McGregor); T. neocaledonicus André; and T. urticae Koch. Four new localities in Brazil were reported for Eotetranychus tremae De Leon; O. anonae; Panonychus ulmi (Koch); and T. gloveri Baker and Pritchard

    Magnetic Resonance Force Microscopy of paramagnetic electron spins at millikelvin temperatures

    Full text link
    Magnetic Resonance Force Microscopy (MRFM) is a powerful technique to detect a small number of spins that relies on force-detection by an ultrasoft magnetically tipped cantilever and selective magnetic resonance manipulation of the spins. MRFM would greatly benefit from ultralow temperature operation, because of lower thermomechanical noise and increased thermal spin polarization. Here, we demonstrate MRFM operation at temperatures as low as 30 mK, thanks to a recently developed SQUID-based cantilever detection technique which avoids cantilever overheating. In our experiment, we detect dangling bond paramagnetic centers on a silicon surface down to millikelvin temperatures. Fluctuations of such kind of defects are supposedly linked to 1/f magnetic noise and decoherence in SQUIDs as well as in several superconducting and single spin qubits. We find evidence that spin diffusion plays a key role in the low temperature spin dynamics.Comment: 7 pages, 5 figure

    Coastal ecosystems: A critical element of risk reduction

    Get PDF
    The conservation of coastal ecosystems can provide considerable coastal protection benefits, but this role has not been sufficiently accounted for in coastal planning and engineering. Substantial evidence now exists showing how, and under what conditions, ecosystems can play a valuable function in wave and storm surge attenuation, erosion reduction, and in the longer term maintenance of the coastal profile. Both through their capacity for self repair and recovery, and through the often considerable cobenefits they provide, ecosystems can offer notable advantages over traditional engineering approaches in some settings. They can also be combined in "hybrid" engineering designs. We make 10 recommendations to encourage the utilization of existing knowledge and to improve the incorporation of ecosystems into policy, planning and funding for coastal hazard risk reduction

    Continental mass change from GRACE over 2002-2011 and its impact on sea level

    Get PDF
    Present-day continental mass variation as observed by space gravimetry reveals secular mass decline and accumulation. Whereas the former contributes to sea-level rise, the latter results in sea-level fall. As such, consideration of mass accumulation (rather than focussing solely on mass loss) is important for reliable overall estimates of sea-level change. Using data from the Gravity Recovery And Climate Experiment satellite mission, we quantify mass-change trends in 19 continental areas that exhibit a dominant signal. The integrated mass change within these regions is representative of the variation over the whole land areas. During the integer 9-year period of May 2002 to April 2011, GIA-adjusted mass gain and mass loss in these areas contributed, on average, to −(0.7 ± 0.4) mm/year of sea-level fall and + (1.8 ± 0.2) mm/year of sea-level rise; the net effect was + (1.1 ± 0.6) mm/year. Ice melting over Greenland, Iceland, Svalbard, the Canadian Arctic archipelago, Antarctica, Alaska and Patagonia was responsible for + (1.4±0.2) mm/year of the total balance. Hence, land-water mass accumulation compensated about 20 % of the impact of ice-melt water influx to the oceans. In order to assess the impact of geocentre motion, we converted geocentre coordinates derived from satellite laser ranging (SLR) to degree-one geopotential coefficients. We found geocentre motion to introduce small biases to mass-change and sea-level change estimates; its overall effect is + (0.1 ± 0.1) mm/year. This value, however, should be taken with care owing to questionable reliability of secular trends in SLR-derived geocentre coordinates
    corecore