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Abstract Present-day continental mass variation as observed by space gravimetry

reveal secular mass decline and accumulation. Whereas the former contribute to sea-

level rise, the latter result in sea-level fall. As such, consideration of mass accumulation

(rather than focussing solely on mass loss) is important for reliable overall estimates

of sea-level change. Using data from the Gravity Recovery And Climate Experiment

(GRACE) satellite mission, we quantify mass-change trends in 19 continental areas

that exhibit a dominant signal. The integrated mass change within these regions is

representative of the variation over the whole land areas. During the integer nine-year

period May 2002 to April 2011, GIA-adjusted mass gain and mass loss in these areas

contributed, on average, to −(0.7±0.4)mm/yr of sea-level fall and +(1.8±0.2)mm/yr

of sea-level rise; the net effect was +(1.1 ± 0.6)mm/yr. Ice melting over Greenland,

Iceland, Svalbard, the Canadian Arctic archipelago, Antarctica, Alaska and Patagonia

was responsible for +(1.4 ± 0.2)mm/yr of the total balance. Hence, land-water mass

accumulation compensated about 20% of the impact of ice-melt water influx to the

oceans. In order to assess the impact of geocentre motion, we converted geocentre

coordinates derived from Satellite Laser Ranging (SLR) to degree-one geopotential

coefficients. We found geocentre motion to introduce small biases to mass-change and

sea-level change estimates; its overall effect is +(0.1±0.1) mm/yr. This value, however,

should be taken with care owing to questionable reliability of secular trends in SLR-

derived geocentre coordinates.

Keywords GRACE · Time-variable gravity · Mass variation · Sea level · Geocentre
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1 Introduction

Mass transport in the Earth’s system is one of the main indicators of contemporary

climate change, most notably with regard to sea-level variation estimates and fore-

casts (e.g., Milne et al., 2009). According to the latest Intergovernmental Panel on

Climate Change (IPCC) report (Bindoff et al., 2007), during the period 1993-2003, the

total altimetry-observed sea-level change rate of +(3.1± 0.7)mm/yr contained a steric

component of +(1.6± 0.5)mm/yr and a land-ice contribution of +(1.2± 0.4)mm/yr.

Cazenave et al. (2009) showed that the overall altimetry-derived sea-level change

rate decreased to +(2.5 ± 0.4)mm/yr during the period 2003-2008. Whereas ocean

thermal expansion has reduced since 2003 to +(0.4 ± 0.1)mm/yr (ibid.), present ice-

melt water influx into the oceans is thought to be the main factor driving present sea-

level change. Ice sheets have the largest long-term potential effect, where their complete

melt would result in a globally averaged sea-level rise of about 70m (Rahmstorf, 2007),

though this varies with position (Farrell and Clark, 1976; Mitrovica et al., 2001; Riva

et al., 2010).

Although there is wide consensus on the ongoing secular and periodic changes of

the Earth’s masses, the quantification of these variations remains somewhat controver-

sial. Satellite gravimetry allows inference of mass variations from time-variable grav-

ity measurements in space. Since 2002, the GRACE (Gravity Recovery And Climate

Change Experiment) satellite mission has substantially contributed to an improved

understanding of present-day processes. GRACE gravity field time-series have regu-

larly been exploited to derive ice-loss rates within selected regions of interest such as

Greenland (e.g., Luthcke et al., 2006), Alaska (e.g., Chen et al., 2006a), Antarctica

(e.g., Velicogna and Wahr, 2006a) and Patagonia (e.g., Chen et al., 2007). Land-water
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studies typically examine mass-variation characteristics of large river basins and water

catchments (e.g., Tapley et al., 2004; Schmidt et al., 2008; Llovel et al., 2010).

This work assesses GRACE-derived continental mass variations on a global scale,

including both land-ice and land-water contributions. Our primary objective is to pro-

vide some answer to the following question: What can we learn about sea-level change

from gravitational signals invoked by land-hydrological mass variations? For this pur-

pose, we investigated continental areas that are most affected by secular mass change

as seen by GRACE. As such, this is the first study that selects the regions of interest

exclusively on the basis of dominant GRACE signal, rather than by means of a priori

spatial information. We also shed light on the impact of geocentre motion on these

mass trend estimates. Our results are derived from analysis over an integer nine-year

period, and hence include an additional one to three years of time-variable gravity fields

over previous studies. We compare our results with other findings on land-hydrological

changes and estimates of ocean mass trends derived from GRACE.

2 Methods

2.1 Computation of equivalent water height values

Our results are based on monthly gravity field models provided by the Center for Space

Research (CSR), University of Texas at Austin. The data is delivered in terms of 4π-

normalized spherical harmonic coefficients complete up to degree and order 60. The

period of investigation is May 2002 to April 2011, i.e., nine integer years. Data gaps

occurred for five months (June 2002, July 2002, June 2003, January 2009, January

2011), thus the total number of ‘snapshots’ is 103. Residuals of spherical harmonic
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coefficients were obtained by subtracting the (assumed static) nine-year means from

the monthly values.

We followed one of the “standard” procedures to infer residual (relative to the

temporal mean) equivalent water height (∆EWH) values from GRACE time-variable

gravity. This procedure has been reported repeatedly in the literature (e.g., Wahr et

al., 1998; Baur et al., 2009); therefore, we give only a very brief outline. The approach

approximates vertically integrated mass changes by surface mass densities (Wahr et al.,

1998). The numerical constants involved in this formalism are ρave = 5517 kg/m3 and

ρw = 1000 kg/m3 for the average mass-density of the solid Earth and of freshwater,

respectively; the load Love numbers were taken from Farrell (1972) for the Gutenberg-

Bullen model.

As shown by Swenson and Wahr (2006), GRACE-derived spherical harmonic coeffi-

cients are contaminated by correlated errors. The errors can be removed by fitting and

subtracting a low-order polynomial separately to even and odd coefficients. In order

to damp GRACE errors in (de-correlated) high-degree spherical harmonic coefficients,

we down-weighted short-scale gravity field features by spatial averaging. Akin to pre-

vious studies (cf., Schmidt et al., 2008; Baur et al., 2009; Chen et al., 2009), we used

Gaussian smoothing (Jekeli, 1981) with a radius of 500 km.

Prior to analysis, we replaced the CSR c̄20 spherical harmonic coefficients by values

obtained from Satellite Laser Ranging (SLR) (Cheng and Tapley, 2004). The SLR val-

ues of the flattening coefficient have been proven to be more reliable than the GRACE

c̄20 estimates (e.g., Velicogna and Wahr, 2006b). We used the SLR data provided by

the GRACE Tellus Team (grace.jpl.nasa.gov), taking both the atmosphere-ocean

de-aliasing model (Flechtner, 2007) and the IERS2003 rate for c̄20 (McCarthy and

Petit, 2004) into account.
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2.2 Computation of mass-change rates

In order to avoid aliasing effects of strong seasonal signals and tidal constituents fal-

sifying our trend estimates, we fit ∆EWH time-series with a linear trend function

and four sinusoids by least-squares adjustment. The sinusoids account for the annual

signal, semi-annual signal and two tidal aliases (Chen et al., 2009), i.e., the S2 tide

(161-day period) and the K2 tide (3.73-year period). Due to the limited time span of

our GRACE gravity field series, our analysis does not account for possible long-term

(decadal and longer) periodic changes in hydrology. The standard deviations of the

polynomial coefficients were derived from the variance-covariance matrix of the esti-

mated regression parameters (product of the inverse normal equations’ matrix with the

a posteriori variance of unit weight).

Our error bounds are based on error propagation within each individual processing

step, starting from the formal errors of the spherical harmonic coefficients as initial

error information. However, the consideration of formal errors only has a marginal

influence on the derived uncertainties. We suppose that the incorporation of formal

errors is only of minor importance, even if they are empirically calibrated in order to

more realistically represent the actual noise in GRACE-based monthly solutions (cf.

Koch, 2005; Wagner and McAdoo, 2011). The overall error budget is dominated by the

adjusted residuals, i.e., the differences between the monthly mass variations and the

least-squares fit to these values.

Several recent studies have pointed to potentially accelerated mass-variation pro-

cesses. Velicogna and Wahr (2006b) found that Greenland ice-mass loss accelerated

by about 250% between April 2002 to April 2004 and May 2004 to April 2006. This

result was supported by Baur et al. (2012), analyzing various several-year periods and
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applying various metric criteria. Rignot et al. (2011) suggested that deglaciation over

Greenland and Antarctica accelerated by +(21.9 ± 1)Gt/yr2 and +(14.5 ± 2)Gt/yr2,

respectively, over the last 18 years. Analyzing GRACE data over the period 2002 to

2009, Velicogna (2009) quantified ice-loss acceleration of +(30± 11) Gt/yr2 in Green-

land and +(26± 14) Gt/yr2 in Antarctica.

For most of our regions of interest, statistical hypothesis testing (Student t-test

with a 5% level of significance) of the polynomial coefficients revealed that the tem-

poral progress of mass change is better represented by a linear trend function than a

second-order polynomial. On the other hand, the difference in mass change over the

entire integer nine-year period adopting a linear versus a second-order trend function

is negligible. For Greenland, for instance, this difference is far less than 1%, and hence

within the error bounds. This discrepancy can be considered as an upper bound, since

Greenland is one of the regions most affected by an accelerated mass-variation signa-

ture. In this study, we are exclusively interested in change rates over a fixed period.

Therefore, we consistently modelled secular mass changes by linear trend functions.

2.3 Correction for signal leakage

Leakage effects cause the GRACE signal to spread out spatially, thus not be concen-

trated directly over the area of mass variation but also over the surrounding region;

theoretically over the whole globe (e.g., Chen et al., 2006b). Therefore, we derived

continental mass variations within our selected regions of interest using the leakage

correction algorithm developed by Baur et al. (2009).

The procedure isolates and quantifies signal leaking out of each region of interest

(leakage-out) and signal leaking into each region of interest (leakage-in). The method is
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a combination of extended spatial filters, followed by “calibration” in terms of compar-

ison with forward gravity field modelling. Most notably, the approach is independent

of the delineation of the region of interest, provided that it is close to the mass-change

location. The total leakage effect is expressed by a single scale factor. We refer the

reader to Baur et al. (2009) for a full description of this technique.

2.4 Correction for glacial isostatic adjustment

In order to reduce the impact of glacial isostatic adjustment (GIA) effects from our

estimates, we incorporated the GIA model by Paulson et al. (2007). We simply followed

the recommendation by the GRACE Tellus Team, referring to it as the temporarily

“best” GIA model (grace.jpl.nasa.gov/data/pgr/). We assumed the GIA signal to

be linear in time, which is justified for the comparatively short period of GRACE data

availability (Swenson et al., 2003).

Due to assumptions of ice-load history and mantle viscosity, GIA models are subject

to large error bounds. For instance, Wu et al. (2010) estimated the GIA effect over

Greenland to be significantly larger compared to previous findings. Riva et al. (2009)

showed that the GIA contribution over Antarctica may amount to +(100± 67) Gt/yr

in apparent mass gain. In contrast, Velicogna and Wahr (2006a) quantified the change

rate to +(176 ± 72) Gt/yr. Discrepancies in GIA modelling are as yet an unresolved

issue, particularly over Antarctica. As such, the choice of the model by Paulson et al.

(2007) is somewhat arbitrary; others may apply their preferred GIA corrections.

We assumed an uncertainty level of 30% for the Paulson model. The error bounds

of our GIA-corrected mass-change estimates, hence, are subject to the uncertainties of

both the regression line slope parameters and GIA model error estimates of 30%.
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2.5 Correction for geocentre motion

Satellite gravimetry is insensitive to geocentre motion, defined as the position of the

Earth’s instantaneous centre of mass (CM) relative to the Earth’s centre of figure

(CF) (Swenson et al., 2008). In fact, the geocentre undergoes periodic and secular

changes. Their omission introduces biases to mass balance estimates (e.g., Chen et

al., 2005). Quinn and Ponte (2010) reported that geocentre adjustment over the period

July 2003 to June 2007 resulted in approximately +0.2mm/yr average sea-level change

equivalent.

Geocentre motion is directly linked to the degree-1 spherical harmonic coefficients

of the gravity field; consequently, the GRACE degree-1 terms are zero by definition.

The relation between the 4π-normalized degree-1 coefficients in the CF frame and the

geocentre coordinates reads (e.g., Crétaux et al., 2002)

c10 =
z√
3a

, c11 =
x√
3a

, s11 =
y√
3a

. (1)

In Eq. (1), (x, y, z) are the Cartesian coordinates of the instantaneous CM in the CF

frame; a indicates the Earth’s mean radius.

Several strategies have been proposed to account for geocentre motion. Each relies

on external information such as provided by SLR (e.g., Crétaux et al., 2002), GPS (e.g.,

Blewitt and Clarke, 2003), modeled ocean bottom pressure (e.g., Swenson et al., 2008),

or a combination of them (e.g., Wu et al., 2006). Here we used geocentre coordinates

of the instantaneous CM relative to the CF derived from SLR (Cheng et al., 2010),

cf. Fig. 1; the data is provided by CSR (ftp.csr.utexas.edu/pub/slr/geocenter/).

We used Eq. (1) to convert geocentre coordinates to degree-1 spherical harmonic coef-

ficients.
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Akin to GIA, geocentre motion estimates have large error bounds. According to

Fig. 1, the signal-to-noise ratio is less than one for many of the monthly values. Further-

more, in general the reliability of SLR-derived geocentre trends is not yet fully verified.

On the other hand, trends in the degree-1 coefficients have a considerable impact on

mass-change quantification, especially on regional scales. We thus decided to follow a

two-track processing scheme: the first neglects geocentre motion, whereas the second

applies corrections according to Fig. 1.

[Fig. 1 about here.]

3 Results

3.1 Regions of interest

Our global assessment of land-hydrological mass changes targets continental areas that

exhibit a dominant GRACE signal. We extracted the regions from the ∆EWH pattern

evaluated on a regular 1◦×1◦ grid. Figure 2 (upper panel) presents the mass-variation

signals as sensed by GRACE. Prior to region delineation, we corrected the pattern

for GIA with the Paulson et al. (2007) model. According to Fig. 2 (lower panel), the

Canadian Shield and Antarctica exhibit the strongest GIA signals. Note that after con-

sideration of post-glacial rebound, the signals over Canada and Fennoscandia become

small compared to the uncorrected pattern.

[Fig. 2 about here.]

The separation between physically meaningful signals and artifacts caused by GRACE

errors is a delicate matter. As a trade-off, we considered only those continental regions

that show signal magnitudes stronger than the strongest signal magnitude over the
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world’s oceans. Hence, the delineation of the regions of interest (RoI) is subject to

(positive and negative) trade-off of the signal strength isolines (Fig. 2, lower panel).

We found this signal strength isolines to ±75% of the total continental signal magni-

tude (this value also holds when taking geocentre motion into account). Note that the

delineation itself is of secondary importance as different delineations are compensated

equally during the leakage-correction procedure (Baur et al., 2009). Hence, the selec-

tion criterion only makes a decision on what regions should be considered but the final

result is not dependent on spatial extent.

Importantly, the continental signals outside our RoI balance close to zero. In order

to quantify the impact of these neglected signals, we compared the balance over the

entire land area with the balance within the RoI (only continental area considered). The

balances differ by 7%, i.e., neglecting the continental signals outside the RoI potentially

introduces an error of 7% to our global budget. Consequently, the total mass variation

within our selected RoI is representative of the mass variation over the whole continents.

As far as the correction for geocenter motion is concerned, the balance over the entire

land area and the balance within the RoI differ by about 10%. This additional error

is uncritical owing to the comparatively small magnitude of the mass-variation signal

caused by geocenter motion.

Our trade-off criterion implies the signal over the oceans to be the upper bound

of signals caused by GRACE errors. Certainly, this trade-off criterion is somewhat

arbitrary. Nevertheless, the choice is reasonable for two reasons. Firstly, most of our

RoI have been reported earlier to show secular mass variation. Secondly, our integrated

regional mass budget is representative for the global mass budget (with a potential error

of 7%, as highlighted before).
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We found 19 RoI to be affected by contemporary secular mass change (Fig. 2, lower

panel). Most of these regions can be attributed to either glaciated areas (Greenland,

Antarctica, Alaska, Patagonia), large river catchment systems (Amazon, Parana, Zam-

bezi/Okavango, Brahmaputra/Ganges, Volga, Euphrates/Tigris, Niger, Godavari/Krishna)

or residual GIA (Canada, Fennoscandia). For the time being, we omit classification of

the signals in Central Siberia, Kamchatka and Australia. These signals are amongst the

weakest, and hence could be artifacts that are misinterpreted as meaningful signals.

3.2 Mass-change trends

Table 1 summarizes our findings of mass-change trends. The magnitudes range from

a few Gt/yr up to more than 300Gt/yr. Note that the region “Greenland” includes

Iceland, Svalbard, and the Canadian Arctic archipelago. The error bounds listed in

Table 1 were obtained by quadratic summation of the GRACE errors, the GIA errors,

and the errors from geocentre motion. Due to GIA uncertainties, the error bounds for

regions with a strong postglacial rebound signal are particularly large. This turns out

most clearly for Canada, as the Canadian Shield exhibits the strongest GIA signal

(Fig. 2).

As a general statement, geocentre motion correction implies mass loss in the North-

ern Hemisphere and mass gain in the Southern Hemisphere. This is subject to the

dominant (negative) trend of the z-component of geocentre motion compared to the

x-y component (Métivier et al., 2010), cf. Fig. 1. As a consequence, RoI in polar areas

are affected most by geocentre motion corrections.

[Table 1 about here.]
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3.3 Sea-level change equivalent

Mass gain or loss over land areas can be translated into homogeneous water changes

over the world’s oceans (Table 1, last two columns). Consequently, each region of inter-

est according to Fig. 2 either contributes to sea-level rise (caused by continental mass

loss) or sea-level fall (caused by continental mass gain). In order to convert our regional

mass-variation budgets to a global budget, we simply summed up the individual con-

tributions (Table 1, last three rows). The error bounds were determined by quadratic

summation of the overall GRACE error (quadratic summation of individual compo-

nents), the overall GIA error (arithmetic summation of individual components), and

the overall geocentre motion error (quadratic summation of individual components).

If geocentre motion is neglected, mass variations in the RoI caused +(1.8±0.2)mm/yr

in sea-level rise and −(0.7± 0.4)mm/yr in sea-level fall; the overall balance is +(1.1±

0.6)mm/yr. The large error bound for the overall estimate stems from the sea-level

fall contributions being more subject to GIA errors. The contribution from glaciated

areas (Greenland, Antarctica, Alaska and Patagonia) is +(1.4± 0.2)mm/yr. This rate

does not include the signal in northern India, which might partially be caused by the

retreat of Himalayan glaciers (Matsuo and Heki, 2010) and partially by groundwa-

ter depletion (Tiwari et al., 2009). Due to the limited spatial resolution of GRACE

data, the separation of these two sources remains a yet unsolved issue (Cazenave

and Chen, 2010). Land-water variation corresponds to a sea level change equivalent

of −(0.2 ± 0.3)mm/yr. Geocentre motion affects our sea-level rise and fall estimates

equally. The net effect is +(0.1± 0.1)mm/yr.
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4 Discussion and conclusions

Our global assessment of continental mass changes isolates 19 regions that are signif-

icantly affected by mass loss or mass gain. Almost all of them can be attributed to

glaciologically or hydrologically active areas such as ice sheets or river basins. Some

of the regions are characterized by rather weak GRACE signals, and hence may be

artefacts misinterpreted as mass change. Regardless, the mass-change magnitudes of

these candidates are comparatively small, i.e., their exclusion has only minor influence

on our results and the conclusions reached.

Our selection criterion was according to dominant GRACE signal. This strategy is

in contrast to previous GRACE studies. For instance, Llovel et al. (2010) defined 33

river basins for their global land water storage investigation. Jacob et al. (2012) quan-

tified mass variation in 20 glaciated areas to shed light on recent deglaciation-driven

sea-level rise. The benefit of our approach is that we avoided any a priori spatial infor-

mation. Moreover, this study includes both land-ice and land-water contributions. As

such, our investigation is more akin to the work by Riva et al. (2010). They quantified

the global budget by taking the GRACE signal over the entire land area into account.

Table 2 provides an overview on the results obtained from the different investiga-

tions. Although the studies refer to inconsistent periods, they are in general agreement.

Note that the land-ice contribution derived by Jacob et al. (2012) is dominated by mass

variation over Greenland (including Iceland, Svalbard, Canadian Arctic archipelago),

Antarctica, Alaska and Patagonia. From a comparison with the results by Riva et al.

(2010), we again conclude that the integrated mass change within our selected RoI is

representative for the variation over the whole continents.

[Table 2 about here.]
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A closer look to the RoI reveals that on the level of individual catchments sig-

nificant trend estimate discrepancies exist. These discrepancies are mainly due to the

differing periods (cf. Baur, 2012). As an example, Llovel et al. (2010) quantified mass

variation in the Amazon basin to +(78 ± 9) Gt/yr; our estimate is +(43± 14)Gt/yr.

The re-evaluation over the period August 2002 to July 2009 yields our balance to

become +(71 ± 19)Gt/yr, which is in line with the change rate found by Llovel et

al. (2010). The same conclusion holds for the Zambesi/Okavango basin with values

of +(21 ± 3)Gt/yr and +(27 ± 12) Gt/yr obtained by Llovel et al. (2010) and our

re-computation, respectively. Further comparisons are not possible as the basin de-

lineations used by Llovel et al. (2010) significantly differ from that one we used. Ja-

cob et al. (2012) estimated mass change over Greenland (including Iceland, Svalbard,

Canadian Arctic archipelago), Antarctica, Alaska and Patagonia to −(300±12) Gt/yr,

−(165±72) Gt/yr, −(46±7)Gt/yr, and −(23±9)Gt/yr, respectively; our (geocentre-

corrected) change rates are −(323 ± 26)Gt/yr, −(104 ± 48) Gt/yr, −(56 ± 7)Gt/yr,

and −(10± 3)Gt/yr.

We used SLR information to capture the impact of CM-to-CF differences on mass

trends and sea-level change. In terms of equivalent sea-level change, we quantified

geocentre motion to introduce a bias of +(0.1±0.1) mm/yr to our analysis. This value

is in broad agreement with the findings by Quinn and Ponte (2010), who reported that

geocentre variations over the period July 2003 to June 2007 resulted in approximately

+0.2mm/yr average sea-level change equivalent. Nonetheless, we emphasize that for the

time being the translation of trends in geocentre coordinates to mass change remains

critical. The adoption of additional geocentre time series (e.g., Rietbroek et al., 2011)

could improve the knowledge about uncertainties in geocentre correction.
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Our estimated non-steric ocean mass trends of +(1.1 ± 0.6)mm/yr (geocentre-

neglected) and +(1.2 ± 0.6)mm/yr (geocentre-corrected) include both land-ice and

land-water contributions. As pointed out earlier, the neglect of continental signals

outside our selected RoI potentially introduces an error of 7% in our global budget,

corresponding to an additional trend of +0.1mm/yr. Our change rates hold for the

period May 2002 to April 2011, i.e., nine integer years. Analyzing gravity field solutions

from 2002 to 2006 over oceanic areas, Lombard et al. (2007) estimated the trend of the

ocean mass change to be +(1.2 ± 0.5)mm/yr. Willis et al. (2008) and Leuliette and

Miller (2009) found the GRACE-derived ocean mass trend to be +(0.8 ± 0.8)mm/yr

and +(0.8±0.5) mm/yr, respectively. Leuliette and Willis (2011) quantified the rate as

+(1.1±0.6) mm/yr for the period January 2005 to September 2010. Noteworthy, these

results are in good agreement, although they are based on different (and sometimes

non-integer-year) time periods, and hence prone to inter-annual variability erroneously

interpreted as part of the mass-change trend.

The sum of ocean mass trend and steric sea-level change provides an estimate

for the total sea-level variation. Based on Argo profiles, the steric component has

been quantified to +(0.4 ± 0.1)mm/yr and +(0.8 ± 0.8)mm/yr by Cazenave et al.

(2009) and Leuliette and Miller (2009), respectively. These numbers differ consider-

ably. Furthermore, it should be noted that the Argo-observed steric component only

accounts for seawater density changes in the upper oceanic layer down to depths of

about 1000m. As reported by Antonov et al. (2005), deep steric changes are consider-

ably smaller. On the other hand, Song and Colberg (2011) found that ocean warming

below 700m might have contributed +1.1mm/yr to sea level rise. In summary, at

present steric sea-level change computation is subject to large uncertainty. In order

to provide some numbers regarding the total sea-level change, adding the steric com-
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ponent of +(0.5 ± 0.5)mm/yr (Leuliette and Willis, 2011) to our non-steric ocean

mass trends yields +(1.6± 0.8)mm/yr (geocentre-neglected) and +(1.7 ± 0.8)mm/yr

(geocentre-corrected).

For the time being, it remains an open issue whether the global assessment of

GRACE-derived secular continental mass variations closes the overall sea-level change

budget. For instance, during the period 2003–2008, Cazenave et al. (2009) quantified the

altimetry-observed trend in sea-level as +(2.5±0.4)mm/yr. Within a similar time span,

Leuliette and Miller (2009) obtained an altimetry-based trend of +(2.4± 1.1)mm/yr.

Owing to the large uncertainties of the involved individual contributions, the sum of

the steric and non-steric sea-level variation fits to the findings from altimetry, and

hence provides a solution to the sea-level enigma (Munk, 2002).
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A (2002) Seasonal and interannual geocentre motion from SLR and DORIS mea-

surements: Comparison with surface loading data. J Geophys Res 107, 2374.

doi: 10.1029/2002JB001820

Farrell WE (1972) Deformation of the Earth by surface loading. Rev Geophys 10:

761–797

Farrell WE, Clark JA (1976) On postglacial sea level. Geophys J R Astr Soc 46: 647–

667

Flechtner F (2007) AOD1B product description document for product releases 01 to

04. Rev 3.1

Jacob T, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and

ice caps to sea level rise. Nature, accepted. doi: 10.1038/nature10847



20

Jekeli C (1981) Alternative methods to smooth the Earth’s gravity field. Rep 327, Dep

of Geod Sci and Surv, Ohio State Univ, Columbus

Koch, KR (2005) Determining the maximum degree of harmonic coefficients in

geopotential models by Monte Carlo methods. Stud Geophys Geod 49: 259–275.

doi: 10.1007/s11200-005-0009-1

Leuliette EW, Miller L (2009) Closing the sea level rise budget with altimetry, Argo,

and GRACE. Geophys Res Lett 36, L04608. doi: 10.1029/2008GL036010

Leuliette EW, Willis JK (2011) Balancing the sea level budget. Oceanography 24:

122–129. doi: 10.5670/oceanog.2011.32
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Fig. 1 SLR-derived geocentre motion from May 2002 to April 2011. Solid lines: Cartesian
coordinates of the instantaneous CM in the CF frame; dashed lines: linear trend functions.
The error bars represent the standard deviation of the monthly values.
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Fig. 2 Secular trends in terms of equivalent water height from May 2002 to April 2011. A
regression line was fitted to time-series of residual EWH values at each point of a global
1◦ × 1◦ grid. Upper panel: no corrections for GIA (and geocentre motion) applied. Lower
panel: corrections for GIA applied. Delineated areas indicate regions of interest considered in
this study; their choice is according to a trade-off between physically meaningful signals and
potential artifacts caused by GRACE errors. Numbers correspond to regions shown in Table 1.
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Table 1 Mass-change trend and average sea-level change equivalent for the regions of interest
as shown in Fig. 2.

Region Mas-change trend (Gt/yr) Sea-level change equivalent (mm/yr)
geocentre-neglected geocentre-corrected geocentre-neglected geocentre-corrected

1 Greenland a
−286 ± 15 −323± 26 0.79± 0.04 0.89± 0.07

2 West Antarctica −201 ± 40 −169± 46 0.56± 0.11 0.47± 0.13
3 Alaska −47 ± 5 −56± 7 0.13± 0.01 0.16± 0.02
4 Parana −27 ± 6 −26± 7 0.07± 0.02 0.07± 0.02
5 Euphrates/Tigris −25 ± 5 −27± 6 0.07± 0.01 0.08± 0.02
6 Brahmaputra/Ganges −24 ± 4 −25± 6 0.07± 0.01 0.07± 0.02
7 Volga −24 ± 5 −28± 6 0.07± 0.01 0.08± 0.02
8 Patagonia −12 ± 2 −10± 3 0.03± 0.01 0.03± 0.01
9 West Australia −9± 2 −7± 3 0.03± 0.01 0.02± 0.01
10 East Antarctica 51± 10 65± 13 −0.14± 0.03 −0.18± 0.04
11 Amazon 50± 13 43± 14 −0.14± 0.04 −0.12± 0.04
12 Zambezi/Okavango 38± 7 40 ± 8 −0.10± 0.02 −0.11± 0.02
13 Canada 51± 110 25± 111 −0.14± 0.31 −0.07± 0.31
14 Fennoscandia 18± 23 12± 23 −0.05± 0.06 −0.03± 0.06
15 Central Siberia 13± 2 10 ± 4 −0.04± 0.01 −0.03± 0.01
16 East Australia 12± 3 14 ± 3 −0.03± 0.01 −0.04± 0.01
17 Niger 9± 2 8± 2 −0.03± 0.01 −0.02± 0.01
18 Kamchatka 9± 2 6± 3 −0.02± 0.01 −0.02± 0.01
19 Godavari/Krishna 3± 1 4± 1 −0.01± 0.00 −0.01± 0.00
Cumulative sea-level rise 1.8± 0.2 1.9± 0.2
Cumulative sea-level fall −0.7± 0.4 −0.6± 0.4
Balance 1.1± 0.6 1.2± 0.6
a Including Iceland, Svalbard, and the Canadian Arctic archipelago.
Uncertainties are given at the 95% (2σ) confidence level.
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Table 2 Contributions of continental mass variation to average sea-level change (mm/yr).

Study Period Land-ice Land-water Total

Llovel et al. (2010) August 2002–July 2009 - −(0.2± 0.1) -
Jacob et al. (2012) January 2003–December 2010 +(1.5± 0.3) - -
Riva et al. (2010) February 2003–February 2009 +(1.0± 0.2) a

−(0.1± 0.3) +(1.0± 0.4)
This study (geocentre-corrected) May 2002–April 2011 +(1.4± 0.2) a −(0.1± 0.3) +(1.2± 0.6)
a Greenland (incl. Iceland, Svalbard, Canadian Arctic archipelago), Antarctica, Alaska and Patagonia


