57 research outputs found

    Reggeon exchange from gauge/gravity duality

    Get PDF
    We perform the analysis of quark-antiquark Reggeon exchange in meson-meson scattering, in the framework of the gauge/gravity correspondence in a confining background. On the gauge theory side, Reggeon exchange is described as quark-antiquark exchange in the t channel between fast projectiles. The corresponding amplitude is represented in terms of Wilson loops running along the trajectories of the constituent quarks and antiquarks. The paths of the exchanged fermions are integrated over, while the "spectator" fermions are dealt with in an eikonal approximation. On the gravity side, we follow a previously proposed approach, and we evaluate the Wilson-loop expectation value by making use of gauge/gravity duality for a generic confining gauge theory. The amplitude is obtained in a saddle-point approximation through the determination near the confining horizon of a Euclidean "minimal surface with floating boundaries", i.e., by fixing the trajectories of the exchanged quark and antiquark by means of a minimisation procedure, which involves both area and length terms. After discussing, as a warm-up exercise, a simpler problem on a plane involving a soap film with floating boundaries, we solve the variational problem relevant to Reggeon exchange, in which the basic geometry is that of a helicoid. A compact expression for the Reggeon-exchange amplitude, including the effects of a small fermion mass, is then obtained through analytic continuation from Euclidean to Minkowski space-time. We find in particular a linear Regge trajectory, corresponding to a Regge-pole singularity supplemented by a logarithmic cut induced by the non-zero quark mass. The analytic continuation leads also to companion contributions, corresponding to the convolution of the same Reggeon-exchange amplitude with multiple elastic rescattering interactions between the colliding mesons.Comment: 60+1 pages, 14 figure

    Wilson-loop formalism for Reggeon exchange in soft high-energy scattering

    Full text link
    We derive a nonperturbative expression for the non-vacuum, qqbar-Reggeon-exchange contribution to the meson-meson elastic scattering amplitude at high energy and low momentum transfer, in the framework of QCD. Describing the mesons in terms of colourless qqbar dipoles, the problem is reduced to the two-fermion-exchange contribution to the dipole-dipole scattering amplitudes, which is expressed as a path integral, over the trajectories of the exchanged fermions, of the expectation value of a certain Wilson loop. We also show how the resulting expression can be reconstructed from a corresponding quantity in the Euclidean theory, by means of analytic continuation. Finally, we make contact with previous work on Reggeon exchange in the gauge/gravity duality approach.Comment: A few misprints in the expressions for the relevant Wilson loops have been corrected. 55 pages, 7 figure

    QGP Theory: Status and Perspectives

    Get PDF
    The current status of Quark-Gluon-Plasma Theory is reviewed. Special emphasis is placed on QGP signatures, the interpretation of current data and what to expect from RHIC in the near future.Comment: 20 pages, invited overview talk at the 4th International Conference on the Physcis and Astrophysics of the Quark-Gluon-Plasma, November 2001, Jaipur, India, to appear in Praman

    Observation of a J^PC = 1-+ exotic resonance in diffractive dissociation of 190 GeV/c pi- into pi- pi- pi+

    Get PDF
    The COMPASS experiment at the CERN SPS has studied the diffractive dissociation of negative pions into the pi- pi- pi+ final state using a 190 GeV/c pion beam hitting a lead target. A partial wave analysis has been performed on a sample of 420000 events taken at values of the squared 4-momentum transfer t' between 0.1 and 1 GeV^2/c^2. The well-known resonances a1(1260), a2(1320), and pi2(1670) are clearly observed. In addition, the data show a significant natural parity exchange production of a resonance with spin-exotic quantum numbers J^PC = 1-+ at 1.66 GeV/c^2 decaying to rho pi. The resonant nature of this wave is evident from the mass-dependent phase differences to the J^PC = 2-+ and 1++ waves. From a mass-dependent fit a resonance mass of 1660 +- 10+0-64 MeV/c^2 and a width of 269+-21+42-64 MeV/c^2 is deduced.Comment: 7 page, 3 figures; version 2 gives some more details, data unchanged; version 3 updated authors, text shortened, data unchange

    Observation of Two New Excited Ξb0 States Decaying to Λb0 K-π+

    Get PDF
    Two narrow resonant states are observed in the Λb0K-π+ mass spectrum using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 6 fb-1. The minimal quark content of the Λb0K-π+ system indicates that these are excited Ξb0 baryons. The masses of the Ξb(6327)0 and Ξb(6333)0 states are m[Ξb(6327)0]=6327.28-0.21+0.23±0.12±0.24 and m[Ξb(6333)0]=6332.69-0.18+0.17±0.03±0.22 MeV, respectively, with a mass splitting of Δm=5.41-0.27+0.26±0.12 MeV, where the uncertainties are statistical, systematic, and due to the Λb0 mass measurement. The measured natural widths of these states are consistent with zero, with upper limits of Γ[Ξb(6327)0]<2.20(2.56) and Γ[Ξb(6333)0]<1.60(1.92) MeV at a 90% (95%) credibility level. The significance of the two-peak hypothesis is larger than nine (five) Gaussian standard deviations compared to the no-peak (one-peak) hypothesis. The masses, widths, and resonant structure of the new states are in good agreement with the expectations for a doublet of 1D Ξb0 resonances

    A facility to Search for Hidden Particles (SHiP) at the CERN SPS

    No full text
    A new general purpose fixed target facility is proposed at the CERN SPS accelerator which is aimed at exploring the domain of hidden particles and make measurements with tau neutrinos. Hidden particles are predicted by a large number of models beyond the Standard Model. The high intensity of the SPS 400~GeV beam allows probing a wide variety of models containing light long-lived exotic particles with masses below O{\cal O}(10)~GeV/c2^2, including very weakly interacting low-energy SUSY states. The experimental programme of the proposed facility is capable of being extended in the future, e.g. to include direct searches for Dark Matter and Lepton Flavour Violation
    corecore