578 research outputs found

    Photometric Calibrations for 21st Century Science

    Get PDF
    The answers to fundamental science questions in astrophysics, ranging from the history of the expansion of the universe to the sizes of nearby stars, hinge on our ability to make precise measurements of diverse astronomical objects. As our knowledge of the underlying physics of objects improves along with advances in detectors and instrumentation, the limits on our capability to extract science from measurements is set, not by our lack of understanding of the nature of these objects, but rather by the most mundane of all issues: the precision with which we can calibrate observations in physical units. We stress the need for a program to improve upon and expand the current networks of spectrophotometrically calibrated stars to provide precise calibration with an accuracy of equal to and better than 1% in the ultraviolet, visible and near-infrared portions of the spectrum, with excellent sky coverage and large dynamic range

    A Developmental Perspective on Facets of Impulsivity and Brain Activity Correlates From Adolescence to Adulthood

    Full text link
    Background: On a theoretical level, impulsivity represents a multidimensional construct associated with acting without foresight, inefficient inhibitory response control, and alterations in reward processing. On an empirical level, relationships and changes in associations between different measures of impulsivity from adolescence into young adulthood and their relation to neural activity during inhibitory control and reward anticipation have not been fully understood. Methods: We used data from IMAGEN, a longitudinal multicenter, population-based cohort study in which 2034 healthy adolescents were investigated at age 14, and 1383 were reassessed as young adults at age 19. We measured the construct of trait impulsivity using self-report questionnaires and neurocognitive indices of decisional impulsivity. With functional magnetic resonance imaging, we assessed brain activity during inhibition error processing using the stop signal task and during reward anticipation in the monetary incentive delay task. Correlations were analyzed, and mixed-effect models were fitted to explore developmental and predictive effects. Results: All self-report and neurocognitive measures of impulsivity proved to be correlated during adolescence and young adulthood. Further, pre-supplementary motor area and inferior frontal gyrus activity during inhibition error processing was associated with trait impulsivity in adolescence, whereas in young adulthood, a trend-level association with reward anticipation activity in the ventral striatum was found. For adult delay discounting, a trend-level predictive effect of adolescent neural activity during inhibition error processing emerged. Conclusions: Our findings help to inform theories of impulsivity about the development of its multidimensional nature and associated brain activity patterns and highlight the need for taking functional brain development into account when evaluating neuromarker candidates

    Googling the brain: discovering hierarchical and asymmetric network structures, with applications in neuroscience

    Get PDF
    Hierarchical organisation is a common feature of many directed networks arising in nature and technology. For example, a well-defined message-passing framework based on managerial status typically exists in a business organisation. However, in many real-world networks such patterns of hierarchy are unlikely to be quite so transparent. Due to the nature in which empirical data is collated the nodes will often be ordered so as to obscure any underlying structure. In addition, the possibility of even a small number of links violating any overall “chain of command” makes the determination of such structures extremely challenging. Here we address the issue of how to reorder a directed network in order to reveal this type of hierarchy. In doing so we also look at the task of quantifying the level of hierarchy, given a particular node ordering. We look at a variety of approaches. Using ideas from the graph Laplacian literature, we show that a relevant discrete optimization problem leads to a natural hierarchical node ranking. We also show that this ranking arises via a maximum likelihood problem associated with a new range-dependent hierarchical random graph model. This random graph insight allows us to compute a likelihood ratio that quantifies the overall tendency for a given network to be hierarchical. We also develop a generalization of this node ordering algorithm based on the combinatorics of directed walks. In passing, we note that Google’s PageRank algorithm tackles a closely related problem, and may also be motivated from a combinatoric, walk-counting viewpoint. We illustrate the performance of the resulting algorithms on synthetic network data, and on a real-world network from neuroscience where results may be validated biologically

    Ocean processes at the Antarctic continental slope

    Get PDF
    The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean-atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front\u27s biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system

    A geometric network model of intrinsic grey-matter connectivity of the human brain

    Get PDF
    Network science provides a general framework for analysing the large-scale brain networks that naturally arise from modern neuroimaging studies, and a key goal in theoretical neuro- science is to understand the extent to which these neural architectures influence the dynamical processes they sustain. To date, brain network modelling has largely been conducted at the macroscale level (i.e. white-matter tracts), despite growing evidence of the role that local grey matter architecture plays in a variety of brain disorders. Here, we present a new model of intrinsic grey matter connectivity of the human connectome. Importantly, the new model incorporates detailed information on cortical geometry to construct ‘shortcuts’ through the thickness of the cortex, thus enabling spatially distant brain regions, as measured along the cortical surface, to communicate. Our study indicates that structures based on human brain surface information differ significantly, both in terms of their topological network characteristics and activity propagation properties, when compared against a variety of alternative geometries and generative algorithms. In particular, this might help explain histological patterns of grey matter connectivity, highlighting that observed connection distances may have arisen to maximise information processing ability, and that such gains are consistent with (and enhanced by) the presence of short-cut connections

    The ACS Survey of Galactic Globular Clusters XIV: Bayesian Single-Population Analysis of 69 Globular Clusters

    Get PDF
    We use Hubble Space Telescope (HST) imaging from the ACS Treasury Survey to determine fits for single population isochrones of 69 Galactic globular clusters. Using robust Bayesian analysis techniques, we simultaneously determine ages, distances, absorptions, and helium values for each cluster under the scenario of a \single stellar population on model grids with solar ratio heavy element abundances. The set of cluster parameters is determined in a consistent and reproducible manner for all clusters using the Bayesian analysis suite BASE-9. Our results are used to re-visit the age-metallicity relation. We find correlations with helium and several other parameters such as metallicity, binary fraction, and proxies for cluster mass. The helium abundances of the clusters are also considered in the context of CNO abundances and the multiple population scenario

    Beyond the Small-Angle Approximation For MBR Anisotropy from Seeds

    Full text link
    In this paper we give a general expression for the energy shift of massless particles travelling through the gravitational field of an arbitrary matter distribution as calculated in the weak field limit in an asymptotically flat space-time. It is {\it not} assumed that matter is non-relativistic. We demonstrate the surprising result that if the matter is illuminated by a uniform brightness background that the brightness pattern observed at a given point in space-time (modulo a term dependent on the oberver's velocity) depends only on the matter distribution on the observer's past light-cone. These results apply directly to the cosmological MBR anisotropy pattern generated in the immediate vicinity of of an object like a cosmic string or global texture. We apply these results to cosmic strings, finding a correction to previously published results for in the small-angle approximation. We also derive the full-sky anisotropy pattern of a collapsing texture knot.Comment: 23 pages, FERMILAB-Pub-94/047-

    Chiral 2pi exchange at order four and peripheral NN scattering

    Get PDF
    We calculate the impact of the complete set of two-pion exchange contributions at chiral order four (also known as next-to-next-to-next-to-leading order, N3LO) on peripheral partial waves of nucleon-nucleon scattering. Our calculations are based upon the analytical studies by Kaiser. It turns out that the contribution of order four is substantially smaller than the one of order three, indicating convergence of the chiral expansion. We compare the prediction from chiral pion-exchange with the corresponding one from conventional meson-theory as represented by the Bonn Full Model and find, in general, good agreement. Our calculations provide a sound basis for investigating the issue whether the low-energy constants determined from pi-N lead to reasonable predictions for NN.Comment: 22 pages RevTex including 11 figure

    Social Roles and Baseline Proxemic Preferences for a Domestic Service Robot

    Get PDF
    © The Author(s) 2014. This article is published with open access at Springerlink.com. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. The work described in this paper was conducted within the EU Integrated Projects LIREC (LIving with Robots and intEractive Companions, funded by the European Commission under contract numbers FP7 215554, and partly funded by the ACCOMPANY project, a part of the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement n287624The goal of our research is to develop socially acceptable behavior for domestic robots in a setting where a user and the robot are sharing the same physical space and interact with each other in close proximity. Specifically, our research focuses on approach distances and directions in the context of a robot handing over an object to a userPeer reviewe

    Sustainability of biohydrogen as fuel: Present scenario and future perspective

    Get PDF
    corecore