293 research outputs found

    Genome-wide association study identifies loci associated with liability to alcohol and drug dependence that is associated with variability in reward-related ventral striatum activity in African- and European-Americans.

    Get PDF
    Genetic influences on alcohol and drug dependence partially overlap, however, specific loci underlying this overlap remain unclear. We conducted a genome-wide association study (GWAS) of a phenotype representing alcohol or illicit drug dependence (ANYDEP) among 7291 European-Americans (EA; 2927 cases) and 3132 African-Americans (AA: 1315 cases) participating in the family-based Collaborative Study on the Genetics of Alcoholism. ANYDEP was heritable (h 2 in EA = 0.60, AA = 0.37). The AA GWAS identified three regions with genome-wide significant (GWS; P < 5E-08) single nucleotide polymorphisms (SNPs) on chromosomes 3 (rs34066662, rs58801820) and 13 (rs75168521, rs78886294), and an insertion-deletion on chromosome 5 (chr5:141988181). No polymorphisms reached GWS in the EA. One GWS region (chromosome 1: rs1890881) emerged from a trans-ancestral meta-analysis (EA + AA) of ANYDEP, and was attributable to alcohol dependence in both samples. Four genes (AA: CRKL, DZIP3, SBK3; EA: P2RX6) and four sets of genes were significantly enriched within biological pathways for hemostasis and signal transduction. GWS signals did not replicate in two independent samples but there was weak evidence for association between rs1890881 and alcohol intake in the UK Biobank. Among 118 AA and 481 EA individuals from the Duke Neurogenetics Study, rs75168521 and rs1890881 genotypes were associated with variability in reward-related ventral striatum activation. This study identified novel loci for substance dependence and provides preliminary evidence that these variants are also associated with individual differences in neural reward reactivity. Gene discovery efforts in non-European samples with distinct patterns of substance use may lead to the identification of novel ancestry-specific genetic markers of risk

    Allele-specific miRNA-binding analysis identifies candidate target genes for breast cancer risk

    Get PDF
    Most breast cancer (BC) risk-associated single-nucleotide polymorphisms (raSNPs) identified in genome-wide association studies (GWAS) are believed to cis-regulate the expression of genes. We hypothesise that cis-regulatory variants contributing to disease risk may be affecting microRNA (miRNA) genes and/or miRNA binding. To test this, we adapted two miRNA-binding prediction algorithms-TargetScan and miRanda-to perform allele-specific queries, and integrated differential allelic expression (DAE) and expression quantitative trait loci (eQTL) data, to query 150 genome-wide significant ( P≤5×10-8 ) raSNPs, plus proxies. We found that no raSNP mapped to a miRNA gene, suggesting that altered miRNA targeting is an unlikely mechanism involved in BC risk. Also, 11.5% (6 out of 52) raSNPs located in 3'-untranslated regions of putative miRNA target genes were predicted to alter miRNA::mRNA (messenger RNA) pair binding stability in five candidate target genes. Of these, we propose RNF115, at locus 1q21.1, as a strong novel target gene associated with BC risk, and reinforce the role of miRNA-mediated cis-regulation at locus 19p13.11. We believe that integrating allele-specific querying in miRNA-binding prediction, and data supporting cis-regulation of expression, improves the identification of candidate target genes in BC risk, as well as in other common cancers and complex diseases.Funding Agency Portuguese Foundation for Science and Technology CRESC ALGARVE 2020 European Union (EU) 303745 Maratona da Saude Award DL 57/2016/CP1361/CT0042 SFRH/BPD/99502/2014 CBMR-UID/BIM/04773/2013 POCI-01-0145-FEDER-022184info:eu-repo/semantics/publishedVersio

    Genome-wide association and meta-analysis in populations from Starr County, Texas, and Mexico City identify type 2 diabetes susceptibility loci and enrichment for expression quantitative trait loci in top signals

    Get PDF
    AIMS/HYPOTHESIS: We conducted genome-wide association studies (GWASs) and expression quantitative trait loci (eQTL) analyses to identify and characterise risk loci for type 2 diabetes in Mexican-Americans from Starr County, TX, USA. METHOD: Using 1.8 million directly interrogated and imputed genotypes in 837 unrelated type 2 diabetes cases and 436 normoglycaemic controls, we conducted Armitage trend tests. To improve power in this population with high disease rates, we also performed ordinal regression including an intermediate class with impaired fasting glucose and/or glucose tolerance. These analyses were followed by meta-analysis with a study of 967 type 2 diabetes cases and 343 normoglycaemic controls from Mexico City, Mexico. RESULT: The top signals (unadjusted p value <1×10(−5)) included 49 single nucleotide polymorphisms (SNPs) in eight gene regions (PER3, PARD3B, EPHA4, TOMM7, PTPRD, HNT [also known as RREB1], LOC729993 and IL34) and six intergenic regions. Among these was a missense polymorphism (rs10462020; Gly639Val) in the clock gene PER3, a system recently implicated in diabetes. We also report a second signal (minimum p value 1.52× 10(−6)) within PTPRD, independent of the previously implicated SNP, in a population of Han Chinese. Top meta-analysis signals included known regions HNF1A and KCNQ1. Annotation of top association signals in both studies revealed a marked excess of trans-acting eQTL in both adipose and muscle tissues. CONCLUSIONS/INTERPRETATION: In the largest study of type 2 diabetes in Mexican populations to date, we identified modest associations of novel and previously reported SNPs. In addition, in our top signals we report significant excess of SNPs that predict transcript levels in muscle and adipose tissues

    Comprehensive Survey of SNPs in the Affymetrix Exon Array Using the 1000 Genomes Dataset

    Get PDF
    Microarray gene expression data has been used in genome-wide association studies to allow researchers to study gene regulation as well as other complex phenotypes including disease risks and drug response. To reach scientifically sound conclusions from these studies, however, it is necessary to get reliable summarization of gene expression intensities. Among various factors that could affect expression profiling using a microarray platform, single nucleotide polymorphisms (SNPs) in target mRNA may lead to reduced signal intensity measurements and result in spurious results. The recently released 1000 Genomes Project dataset provides an opportunity to evaluate the distribution of both known and novel SNPs in the International HapMap Project lymphoblastoid cell lines (LCLs). We mapped the 1000 Genomes Project genotypic data to the Affymetrix GeneChip Human Exon 1.0ST array (exon array), which had been used in our previous studies and for which gene expression data had been made publicly available. We also evaluated the potential impact of these SNPs on the differentially spliced probesets we had identified previously. Though the 1000 Genomes Project data allowed a comprehensive survey of the SNPs in this particular array, the same approach can certainly be applied to other microarray platforms. Furthermore, we present a detailed catalogue of SNP-containing probesets (exon-level) and transcript clusters (gene-level), which can be considered in evaluating findings using the exon array as well as benefit the design of follow-up experiments and data re-analysis

    Identification of a Bipolar Disorder Vulnerable Gene CHDH at 3p21.1

    Get PDF
    Genome-wide analysis (GWA) is an effective strategy to discover extreme effects surpassing genome-wide significant levels in studying complex disorders; however, when sample size is limited, the true effects may fail to achieve genome-wide significance. In such case, there may be authentic results among the pools of nominal candidates, and an alternative approach is to consider nominal candidates but are replicable across different samples. Here, we found that mRNA expression of the choline dehydrogenase gene (CHDH) was uniformly upregulated in the brains of bipolar disorder (BPD) patients compared with healthy controls across different studies. Follow-up genetic analyses of CHDH variants in multiple independent clinical datasets (including 11,564 cases and 17,686 controls) identified a risk SNP rs9836592 showing consistent associations with BPD (P meta = 5.72 × 10(-4)), and the risk allele indicated an increased CHDH expression in multiple neuronal tissues (lowest P = 6.70 × 10(-16)). These converging results may identify a nominal but true BPD susceptibility gene CHDH. Further exploratory analysis revealed suggestive associations of rs9836592 with childhood intelligence (P = 0.044) and educational attainment (P = 0.0039), a 'proxy phenotype' of general cognitive abilities. Intriguingly, the CHDH gene is located at chromosome 3p21.1, a risk region implicated in previous BPD genome-wide association studies (GWAS), but CHDH is lying outside of the core GWAS linkage disequilibrium (LD) region, and our studied SNP rs9836592 is ∼1.2 Mb 3' downstream of the previous GWAS loci (e.g., rs2251219) with no LD between them; thus, the association observed here is unlikely a reflection of previous GWAS signals. In summary, our results imply that CHDH may play a previously unknown role in the etiology of BPD and also highlight the informative value of integrating gene expression and genetic code in advancing our understanding of its biological basis

    ExprTarget: An Integrative Approach to Predicting Human MicroRNA Targets

    Get PDF
    Variation in gene expression has been observed in natural populations and associated with complex traits or phenotypes such as disease susceptibility and drug response. Gene expression itself is controlled by various genetic and non-genetic factors. The binding of a class of small RNA molecules, microRNAs (miRNAs), to mRNA transcript targets has recently been demonstrated to be an important mechanism of gene regulation. Because individual miRNAs may regulate the expression of multiple gene targets, a comprehensive and reliable catalogue of miRNA-regulated targets is critical to understanding gene regulatory networks. Though experimental approaches have been used to identify many miRNA targets, due to cost and efficiency, current miRNA target identification still relies largely on computational algorithms that aim to take advantage of different biochemical/thermodynamic properties of the sequences of miRNAs and their gene targets. A novel approach, ExprTarget, therefore, is proposed here to integrate some of the most frequently invoked methods (miRanda, PicTar, TargetScan) as well as the genome-wide HapMap miRNA and mRNA expression datasets generated in our laboratory. To our knowledge, this dataset constitutes the first miRNA expression profiling in the HapMap lymphoblastoid cell lines. We conducted diagnostic tests of the existing computational solutions using the experimentally supported targets in TarBase as gold standard. To gain insight into the biases that arise from such an analysis, we investigated the effect of the choice of gold standard on the evaluation of the various computational tools. We analyzed the performance of ExprTarget using both ROC curve analysis and cross-validation. We show that ExprTarget greatly improves miRNA target prediction relative to the individual prediction algorithms in terms of sensitivity and specificity. We also developed an online database, ExprTargetDB, of human miRNA targets predicted by our approach that integrates gene expression profiling into a broader framework involving important features of miRNA target site predictions

    Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants

    Get PDF
    Vitiligo is an autoimmune disease in which depigmented skin results from the destruction of melanocytes1, with epidemiological association with other autoimmune diseases2. In previous linkage and genome-wide association studies (GWAS1 and GWAS2), we identified 27 vitiligo susceptibility loci in patients of European ancestry. We carried out a third GWAS (GWAS3) in European-ancestry subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new significantly associated loci and 7 suggestive loci. Most encode immune and apoptotic regulators, with some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some of which corresponds to expression quantitative trait loci (eQTLs) at these loci. Together, the identified genes provide a framework for the genetic architecture and pathobiology of vitiligo, highlight relationships with other autoimmune diseases and melanoma, and offer potential targets for treatment

    Genetic architecture of host proteins involved in SARS-CoV-2 infection

    Get PDF
    Understanding the genetic architecture of host proteins interacting with SARS-CoV-2 or mediating the maladaptive host response to COVID-19 can help to identify new or repurpose existing drugs targeting those proteins. We present a genetic discovery study of 179 such host proteins among 10,708 individuals using an aptamer-based technique. We identify 220 host DNA sequence variants acting in cis (MAF 0.01-49.9%) and explaining 0.3-70.9% of the variance of 97 of these proteins, including 45 with no previously known protein quantitative trait loci (pQTL) and 38 encoding current drug targets. Systematic characterization of pQTLs across the phenome identified protein-drug-disease links and evidence that putative viral interaction partners such as MARK3 affect immune response. Our results accelerate the evaluation and prioritization of new drug development programmes and repurposing of trials to prevent, treat or reduce adverse outcomes. Rapid sharing and detailed interrogation of results is facilitated through an interactive webserver (https://omicscience.org/apps/covidpgwas/).We further acknowledge support for genomics from the Medical Research Council (MC_PC_13046). Proteomic measurements were supported and governed by a collaboration agreement between the University of Cambridge and Somalogic. JCZ and VPWA are supported by a 4-year Wellcome Trust PhD Studentship and the Cambridge Trust, CL, EW, and NJW are funded by the Medical Research Council (MC_UU_12015/1). NJW and ADH are an NIHR Senior Investigator. GK is supported by grants from the National Institute on Aging (NIA): R01 AG057452, RF1 AG058942, RF1 AG059093, U01 AG061359, and U19 AG063744. MR acknowledges funding from the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001134), the UK Medical Research Council (FC001134), and the Wellcome Trust (FC001134). ERG is supported by the National Human Genome Research Institute of the National Institutes of Health under Award Numbers R35HG010718 and R01HG011138. JR is supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the e:Med research and funding concept (grant no. 01ZX1912D). This work was supported by the UCL British Heart Foundation Research Accelerator Award (AA/18/6/34223), the National Institute for Health Research University College London Hospitals Biomedical Research Centre, and arises from one of the national "Covid-19 Cardiovascular Disease Flagship Projects" designated by the NIHR-BHF Cardiovascular Partnership
    corecore