88 research outputs found

    Intrinsic gain modulation and adaptive neural coding

    Get PDF
    In many cases, the computation of a neural system can be reduced to a receptive field, or a set of linear filters, and a thresholding function, or gain curve, which determines the firing probability; this is known as a linear/nonlinear model. In some forms of sensory adaptation, these linear filters and gain curve adjust very rapidly to changes in the variance of a randomly varying driving input. An apparently similar but previously unrelated issue is the observation of gain control by background noise in cortical neurons: the slope of the firing rate vs current (f-I) curve changes with the variance of background random input. Here, we show a direct correspondence between these two observations by relating variance-dependent changes in the gain of f-I curves to characteristics of the changing empirical linear/nonlinear model obtained by sampling. In the case that the underlying system is fixed, we derive relationships relating the change of the gain with respect to both mean and variance with the receptive fields derived from reverse correlation on a white noise stimulus. Using two conductance-based model neurons that display distinct gain modulation properties through a simple change in parameters, we show that coding properties of both these models quantitatively satisfy the predicted relationships. Our results describe how both variance-dependent gain modulation and adaptive neural computation result from intrinsic nonlinearity.Comment: 24 pages, 4 figures, 1 supporting informatio

    A Normalization Model of Attentional Modulation of Single Unit Responses

    Get PDF
    Although many studies have shown that attention to a stimulus can enhance the responses of individual cortical sensory neurons, little is known about how attention accomplishes this change in response. Here, we propose that attention-based changes in neuronal responses depend on the same response normalization mechanism that adjusts sensory responses whenever multiple stimuli are present. We have implemented a model of attention that assumes that attention works only through this normalization mechanism, and show that it can replicate key effects of attention. The model successfully explains how attention changes the gain of responses to individual stimuli and also why modulation by attention is more robust and not a simple gain change when multiple stimuli are present inside a neuron's receptive field. Additionally, the model accounts well for physiological data that measure separately attentional modulation and sensory normalization of the responses of individual neurons in area MT in visual cortex. The proposal that attention works through a normalization mechanism sheds new light a broad range of observations on how attention alters the representation of sensory information in cerebral cortex

    Emission of volatile halogenated compounds, speciation and localization of bromine and iodine in the brown algal genome model Ectocarpus siliculosus

    Get PDF
    This study explores key features of bromine and iodine metabolism in the filamentous brown alga and genomics model Ectocarpus siliculosus. Both elements are accumulated in Ectocarpus, albeit at much lower concentration factors (2-3 orders of magnitude for iodine, and < 1 order of magnitude for bromine) than e.g. in the kelp Laminaria digitata. Iodide competitively reduces the accumulation of bromide. Both iodide and bromide are accumulated in the cell wall (apoplast) of Ectocarpus, with minor amounts of bromine also detectable in the cytosol. Ectocarpus emits a range of volatile halogenated compounds, the most prominent of which by far is methyl iodide. Interestingly, biosynthesis of this compound cannot be accounted for by vanadium haloperoxidase since the latter have not been found to catalyze direct halogenation of an unactivated methyl group or hydrocarbon so a methyl halide transferase-type production mechanism is proposed

    Cortical Surround Interactions and Perceptual Salience via Natural Scene Statistics

    Get PDF
    Spatial context in images induces perceptual phenomena associated with salience and modulates the responses of neurons in primary visual cortex (V1). However, the computational and ecological principles underlying contextual effects are incompletely understood. We introduce a model of natural images that includes grouping and segmentation of neighboring features based on their joint statistics, and we interpret the firing rates of V1 neurons as performing optimal recognition in this model. We show that this leads to a substantial generalization of divisive normalization, a computation that is ubiquitous in many neural areas and systems. A main novelty in our model is that the influence of the context on a target stimulus is determined by their degree of statistical dependence. We optimized the parameters of the model on natural image patches, and then simulated neural and perceptual responses on stimuli used in classical experiments. The model reproduces some rich and complex response patterns observed in V1, such as the contrast dependence, orientation tuning and spatial asymmetry of surround suppression, while also allowing for surround facilitation under conditions of weak stimulation. It also mimics the perceptual salience produced by simple displays, and leads to readily testable predictions. Our results provide a principled account of orientation-based contextual modulation in early vision and its sensitivity to the homogeneity and spatial arrangement of inputs, and lends statistical support to the theory that V1 computes visual salience

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    Recurrent network dynamics reconciles visual motion segmentation and integration

    Get PDF
    In sensory systems, a range of computational rules are presumed to be implemented by neuronal subpopulations with different tuning functions. For instance, in primate cortical area MT, different classes of direction-selective cells have been identified and related either to motion integration, segmentation or transparency. Still, how such different tuning properties are constructed is unclear. The dominant theoretical viewpoint based on a linear-nonlinear feed-forward cascade does not account for their complex temporal dynamics and their versatility when facing different input statistics. Here, we demonstrate that a recurrent network model of visual motion processing can reconcile these different properties. Using a ring network, we show how excitatory and inhibitory interactions can implement different computational rules such as vector averaging, winner-take-all or superposition. The model also captures ordered temporal transitions between these behaviors. In particular, depending on the inhibition regime the network can switch from motion integration to segmentation, thus being able to compute either a single pattern motion or to superpose multiple inputs as in motion transparency. We thus demonstrate that recurrent architectures can adaptively give rise to different cortical computational regimes depending upon the input statistics, from sensory flow integration to segmentation
    corecore